Suppr超能文献

一种基于惯性传感器的三维运动学和病理性步态评估的传感器融合方法:用于中风后患者刺激的自适应控制。

A sensor fusion approach for inertial sensors based 3D kinematics and pathological gait assessments: toward an adaptive control of stimulation in post-stroke subjects.

作者信息

Sijobert B, Feuvrier F, Froger J, Guiraud D, Coste C Azevedo

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:3497-3500. doi: 10.1109/EMBC.2018.8512985.

Abstract

Pathological gait assessment and assistive control based on functional electrical stimulation (FES) in post-stroke individuals, brings out a common need to robustly quantify kinematics facing multiple constraints. This study proposes a novel approach using inertial sensors to compute dorsiflexion angles and spatio-temporal parameters, in order to be later used as inputs for online close-loop control of FES. 26 post-stroke subjects were asked to walk on a pressure mat equipped with inertial measurement units (IMU) and passive reflective markers. A total of 930 strides were individually analyzed and results between IMU-based algorithms and reference systems compared. Mean absolute (MA) errors of dorsiflexion angles were found to be less than 4°, while stride lengths were robustly segmented and estimated with a MA error less than 10 cm. These results open new doors to rehabilitation using adaptive FES closed-loop control strategies in "foot drop" syndrome correction.

摘要

基于功能性电刺激(FES)的中风后个体病理步态评估及辅助控制,凸显了在面对多种限制时对稳健量化运动学的普遍需求。本研究提出一种使用惯性传感器计算背屈角度和时空参数的新方法,以便随后用作FES在线闭环控制的输入。26名中风后受试者被要求在配备有惯性测量单元(IMU)和被动反射标记的压力垫上行走。总共对930步进行了单独分析,并比较了基于IMU的算法与参考系统之间的结果。发现背屈角度的平均绝对(MA)误差小于4°,而步长被稳健地分割和估计,MA误差小于10厘米。这些结果为在“足下垂”综合征矫正中使用自适应FES闭环控制策略进行康复开辟了新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验