Department of Physics, Toho University, Funabashi, Chiba, 274-8510, Japan.
Phys Rev Lett. 2018 Nov 2;121(18):187202. doi: 10.1103/PhysRevLett.121.187202.
We propose a stabilizing mechanism for the Bose-Einstein condensation (BEC) of interacting magnons in ferrimagnets and ferromagnets. By studying the effects of the magnon-magnon interaction on the stability of the magnon BEC in a ferrimagnet and two ferromagnets, we show that the magnon BEC remains stable even in the presence of the magnon-magnon interaction in the ferrimagnet and ferromagnet with a sublattice structure, while it becomes unstable in the ferromagnet without a sublattice structure. This indicates that the existence of a sublattice structure is the key to stabilizing the BEC of interacting magnons, and the difference between the spin alignments of a ferrimagnet and a ferromagnet is irrelevant. Our result can resolve a contradiction between experiment and theory in the magnon BEC of yttrium iron garnet. Our theoretical framework may provide a starting point for understanding the physics of the magnon BEC including the interaction effects.
我们提出了一种用于稳定铁磁体和亚铁磁体中玻色-爱因斯坦凝聚(BEC)的相互作用磁振子的机制。通过研究磁振子-磁振子相互作用对亚铁磁体和两个铁磁体中磁振子 BEC 稳定性的影响,我们表明,即使在亚铁磁体和具有子晶格结构的铁磁体中存在磁振子-磁振子相互作用,磁振子 BEC 仍然保持稳定,而在没有子晶格结构的铁磁体中则变得不稳定。这表明子晶格结构的存在是稳定相互作用磁振子 BEC 的关键,而亚铁磁体和铁磁体中自旋排列的差异是无关紧要的。我们的结果可以解决钇铁石榴石中磁振子 BEC 的实验和理论之间的矛盾。我们的理论框架可能为理解包括相互作用效应在内的磁振子 BEC 的物理性质提供了一个起点。