Song Jong-Won, Hirao Kimihiko
Department of Chemistry Education, Daegu University, 201 Daegudae- ro, 38453, South Korea.
Computational Chemistry Unit, RIKEN Advanced Institute for Computational Science, 7-1-26, Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
J Comput Chem. 2019 Jan 5;40(1):105-112. doi: 10.1002/jcc.25542. Epub 2018 Nov 19.
Recently, we proposed a simple yet efficient method for the computation of a long-range corrected (LC) hybrid scheme [LC-DFT(2Gau)], which uses a modified two-Gaussian attenuating operator instead of the error function for the long-range HF exchange integral. This method dramatically reduced the computational time while maintaining the improved features of the LC density functional theory (DFT). Here, we combined an LC hybrid scheme using a two-Gaussian attenuating operator with one-parameter progressive correlation functional and Becke88 exchange functional with varying range-separation parameter values [LC-BOP(2Gau) with various μ values of 0.16, 0.2, 0.25, 0.3, 0.35, 0.4, and 0.42] and demonstrated that LC-BOP(2Gau) reproduces well the thermochemical and frontier orbital energies of LC-BOP. Additionally, we revised the scaling factors of the Gaussian multipole screening scheme for LC-DFT(2Gau) to correspond to the angular momentum of orbitals, which decreased the energy deviations from the energy with the no-screening scheme. © 2018 Wiley Periodicals, Inc.
最近,我们提出了一种简单而高效的方法来计算长程校正(LC)杂化方案[LC-DFT(2Gau)],该方案使用改进的双高斯衰减算子代替误差函数来计算长程HF交换积分。该方法在保持LC密度泛函理论(DFT)改进特性的同时,显著减少了计算时间。在此,我们将使用双高斯衰减算子的LC杂化方案与单参数渐进相关泛函以及具有不同范围分离参数值的Becke88交换泛函相结合[具有0.16、0.2、0.25、0.3、0.35、0.4和0.42等不同μ值的LC-BOP(2Gau)],并证明LC-BOP(2Gau)能很好地再现LC-BOP的热化学和前沿轨道能量。此外,我们修正了LC-DFT(2Gau)的高斯多极屏蔽方案的缩放因子,使其与轨道角动量相对应,这减少了与无屏蔽方案相比的能量偏差。© 2018威利期刊公司。