Suppr超能文献

利用接触式开尔文探针力显微镜和机器学习在PLZT中跨越铁电-弛豫体相变解耦中尺度功能响应。

Decoupling Mesoscale Functional Response in PLZT across the Ferroelectric-Relaxor Phase Transition with Contact Kelvin Probe Force Microscopy and Machine Learning.

作者信息

Neumayer Sabine M, Collins Liam, Vasudevan Rama, Smith Christopher, Somnath Suhas, Shur Vladimir Ya, Jesse Stephen, Kholkin Andrei L, Kalinin Sergei V, Rodriguez Brian J

机构信息

Center for Nanophase Materials Sciences , Oak Ridge National Laboratory , 1 Bethel Valley Road , Oak Ridge , Tennessee 37831 , United States.

School of Physics , University College Dublin , Belfield 4 , Dublin 4 , Ireland.

出版信息

ACS Appl Mater Interfaces. 2018 Dec 12;10(49):42674-42680. doi: 10.1021/acsami.8b15872. Epub 2018 Dec 3.

Abstract

Relaxor ferroelectrics exhibit a range of interesting material behavior, including high electromechanical response, polarization rotations, as well as temperature and electric field-driven phase transitions. The origin of this unusual functional behavior remains elusive due to limited knowledge on polarization dynamics at the nanoscale. Piezoresponse force microscopy and associated switching spectroscopy provide access to local electromechanical properties on the micro- and nanoscale, which can help to address some of these gaps in our knowledge. However, these techniques are inherently prone to artefacts caused by signal contributions emanating from electrostatic interactions between tip and sample. Understanding functional behavior of complex, disordered systems like relaxor materials with unknown electromechanical properties therefore requires a technique that allows distinguishing between electromechanical and electrostatic response. Here, contact Kelvin probe force microscopy (cKPFM) is used to gain insight into the evolution of local electromechanical and capacitive properties of a representative relaxor material lead lanthanum zirconate across the phase transition from a ferroelectric to relaxor state. The obtained multidimensional data set was processed using an unsupervised machine learning algorithm to detect variations in functional response across the probed area and temperature range. Further analysis showed the formation of two separate cKPFM response bands below 50 °C, providing evidence for polarization switching. At higher temperatures only one band is observed, indicating an electrostatic origin of the measured response. In addition, the junction potential difference, which was extracted from the cKPFM data, becomes independent of the temperature in the relaxor state. The combination of this multidimensional voltage spectroscopy technique and machine learning allows to identify the origin of the measured functional response and to decouple ferroelectric from electrostatic phenomena necessary to understand the functional behavior of complex, disordered systems like relaxor materials.

摘要

弛豫铁电体表现出一系列有趣的材料行为,包括高机电响应、极化旋转以及温度和电场驱动的相变。由于对纳米尺度极化动力学的了解有限,这种不寻常功能行为的起源仍然难以捉摸。压电力显微镜和相关的开关光谱学能够获取微米和纳米尺度上的局部机电特性,这有助于填补我们在这方面的一些知识空白。然而,这些技术本质上容易受到由探针与样品之间静电相互作用产生的信号贡献所导致的伪像影响。因此,要理解像弛豫材料这样具有未知机电特性的复杂无序系统的功能行为,需要一种能够区分机电响应和静电响应的技术。在此,使用接触式开尔文探针力显微镜(cKPFM)来深入了解代表性弛豫材料锆酸镧铅从铁电态到弛豫态相变过程中局部机电和电容特性的演变。使用无监督机器学习算法对获得的多维数据集进行处理,以检测在探测区域和温度范围内功能响应的变化。进一步分析表明,在50°C以下形成了两个独立的cKPFM响应带,这为极化切换提供了证据。在较高温度下,仅观察到一个带,表明测量响应的静电起源。此外,从cKPFM数据中提取的结电位差在弛豫态下变得与温度无关。这种多维电压光谱技术与机器学习的结合,能够识别测量功能响应的起源,并将铁电现象与静电现象解耦,这对于理解像弛豫材料这样的复杂无序系统的功能行为是必要的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验