Tounsi Yassine, Kumar Manoj, Nassim Abdelkrim, Mendoza-Santoyo Fernando
Appl Opt. 2018 Sep 20;57(27):7681-7690. doi: 10.1364/AO.57.007681.
Digital speckle pattern interferometry (DSPI) is widely used in many scientific and industrial applications. Besides its several advantages, one of the basic problems encountered in DSPI is the undesired speckle noise existing in the fringe pattern. In this paper, we demonstrate the performance of nonlocal means (NLM) and its related adaptive kernel-based filtering methods for speckle noise reduction in DSPI fringes. The NLM filter and its related kernel-based filters such as NLM-average, NLM-local polynomial regression, and NLM-shape adaptive patches are implemented first on simulated DSPI fringes, and their performances are quantified on the basis of peak signal-to-noise ratio (PSNR), mean square error (MSE), and quality index (Q). Further, their effectiveness and abilities in reducing speckle noise are compared with other speckle denoising methods. These filtering methods are then employed on experimental DSPI fringes. The obtained results reveal that these filtering methods have the ability to improve the PSNR and Q of the DSPI fringes and provide better visual and quantitative results. It is also observed that the proposed filtering methods preserve the edge information of the DSPI fringes, which is evaluated on the basis of the edge preservation index of the resultant filtered images.
数字散斑图案干涉测量法(DSPI)广泛应用于许多科学和工业领域。除了其诸多优点外,DSPI中遇到的一个基本问题是条纹图案中存在不需要的散斑噪声。在本文中,我们展示了非局部均值(NLM)及其相关的基于自适应核的滤波方法在降低DSPI条纹散斑噪声方面的性能。首先在模拟的DSPI条纹上实现了NLM滤波器及其相关的基于核的滤波器,如NLM-平均、NLM-局部多项式回归和NLM-形状自适应补丁,并基于峰值信噪比(PSNR)、均方误差(MSE)和质量指数(Q)对它们的性能进行了量化。此外,将它们在降低散斑噪声方面的有效性和能力与其他散斑去噪方法进行了比较。然后将这些滤波方法应用于实验DSPI条纹。所得结果表明,这些滤波方法有能力提高DSPI条纹的PSNR和Q,并提供更好的视觉和定量结果。还观察到,所提出的滤波方法保留了DSPI条纹的边缘信息,这是根据所得滤波图像的边缘保留指数来评估的。