Suppr超能文献

Determination of the optical turbulence parameters from the adaptive optics telemetry: critical analysis and on-sky validation.

作者信息

Jolissaint Laurent, Ragland Sam, Christou Julian, Wizinowich Peter

出版信息

Appl Opt. 2018 Sep 20;57(27):7837-7856. doi: 10.1364/AO.57.007837.

Abstract

It has been demonstrated by several authors that the optical turbulence parameters associated with a given adaptive optics (AO) run-the seeing angle and outer scale-can be determined from a statistical analysis of the commands of the system's deformable mirror (DM). The higher the accuracy on these parameters, the more we can make use of them, allowing for instance a better estimation of the seeing statistics at the telescope location or a more accurate assessment of the performance of the AO system. In the context of a point spread function reconstruction project (PSF-R) for the W. M. Keck observatory AO system, we decided to identify, in the most exhaustive way, all the sources of systematic and random errors affecting the determination of the seeing angle and outer scale from the DM telemetry, and find ways to compensate/mitigate these errors to keep them under 10%. The seeing estimated using our improved DM-seeing method was compared with more than 70 nearly simultaneous seeing measurements from open-loop PSFs on the same optical axis, and with independent seeing-monitor measurements acquired at the same time but far from the telescope (DIMM/MASS): the correlation with the open-loop PSF is very good (the error is about 10%), validating the DM-seeing method for accurate seeing determination, while it is weak and sometimes completely uncorrelated with the DIMM/MASS seeing monitor data. We concluded that DM-based seeing can be very accurate if all the error terms are considered in the DM data processing, but that seeing taken from non-collocated seeing monitors is of no use even when moderate accuracy is required.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验