Liu Xiang-Yang, Xie Xiao-Ying, Fang Wei-Hai, Cui Ganglong
Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , China.
J Phys Chem A. 2018 Dec 20;122(50):9587-9596. doi: 10.1021/acs.jpca.8b07816. Epub 2018 Dec 5.
A comprehensive understanding of interfacial charge transfer dynamics is critical for improving the optoelectronic efficiency of organic-transition metal dichalcogenide heterostructures. In this work we have employed density functional theory (DFT) and developed nonadiabatic dynamics simulation approaches to study the photoinduced electron transfer dynamics at the interface of zinc phthalocyanine (ZnPc) and molybdenum disulfide (MoS). Our present results show that ZnPc is adsorbed in a parallel orientation on MoS through a weak van der Waals interaction. Photoirradiation excites an electron of ZnPc into its lowest unoccupied molecular orbital (LUMO), which is primarily located on ZnPc but has a tail on MoS. This enhances the vibronic coupling between the LUMO of ZnPc and adiabatic states of MoS, thereby benefiting the interfacial electron transfer. The LUMO of ZnPc is also calculated to be 0.27 eV higher than the conduction band minimum (CBM) of MoS so that the electron transfer from ZnPc to MoS is thermodynamically favorable. Further nonadiabatic dynamics simulations verify such ultrafast electron transfer and estimate its time scale of ca. 10 fs. In this process, the low-frequency out-of-plane vibration of MoS, and low- and high-frequency in-plane and out-of-plane vibrations of ZnPc are found to play an important role in regulating this interfacial electron transfer. In-depth analysis also reveals that atomic motion induced changes of adiabatic states is a dominant factor leading to such ultrafast interfacial electron transfer. These insights could be useful for understanding charge transfer processes at interfaces of heterostructures.
全面理解界面电荷转移动力学对于提高有机-过渡金属二硫属化物异质结构的光电效率至关重要。在这项工作中,我们采用密度泛函理论(DFT)并开发了非绝热动力学模拟方法,以研究锌酞菁(ZnPc)和二硫化钼(MoS)界面处的光致电子转移动力学。我们目前的结果表明,ZnPc通过弱范德华相互作用以平行取向吸附在MoS上。光照射将ZnPc的一个电子激发到其最低未占据分子轨道(LUMO),该轨道主要位于ZnPc上,但在MoS上有一个尾巴。这增强了ZnPc的LUMO与MoS绝热态之间的振动耦合,从而有利于界面电子转移。计算得出ZnPc的LUMO比MoS的导带最小值(CBM)高0.27 eV,因此从ZnPc到MoS的电子转移在热力学上是有利的。进一步的非绝热动力学模拟验证了这种超快电子转移,并估计其时间尺度约为10 fs。在此过程中,发现MoS的低频面外振动以及ZnPc的低频和高频面内及面外振动在调节这种界面电子转移中起重要作用。深入分析还表明,绝热态的原子运动引起的变化是导致这种超快界面电子转移的主要因素。这些见解可能有助于理解异质结构界面处的电荷转移过程。