Rybakken Erik, Baas Nils, Dunn Benjamin
Department of Mathematical Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, 7491 Trondheim, Norway
Neural Comput. 2019 Jan;31(1):68-93. doi: 10.1162/neco_a_01150. Epub 2018 Nov 21.
We introduce a novel data-driven approach to discover and decode features in the neural code coming from large population neural recordings with minimal assumptions, using cohomological feature extraction. We apply our approach to neural recordings of mice moving freely in a box, where we find a circular feature. We then observe that the decoded value corresponds well to the head direction of the mouse. Thus, we capture head direction cells and decode the head direction from the neural population activity without having to process the mouse's behavior. Interestingly, the decoded values convey more information about the neural activity than the tracked head direction does, with differences that have some spatial organization. Finally, we note that the residual population activity, after the head direction has been accounted for, retains some low-dimensional structure that is correlated with the speed of the mouse.
我们引入了一种全新的数据驱动方法,利用上同调特征提取,以最少的假设来发现和解码来自大量群体神经记录的神经编码中的特征。我们将该方法应用于在盒子中自由移动的小鼠的神经记录,在那里我们发现了一个循环特征。然后我们观察到解码值与小鼠的头部方向非常吻合。因此,我们捕获了头部方向细胞,并从神经群体活动中解码出头部方向,而无需处理小鼠的行为。有趣的是,解码值比跟踪的头部方向传达了更多关于神经活动的信息,且差异具有一定的空间组织。最后,我们注意到,在考虑了头部方向之后,剩余的群体活动保留了一些与小鼠速度相关的低维结构。