Department of Microbiology and Immunology, Microbiome and Disease Tolerance Centre (MDTC), McGill University, Montréal, Québec, Canada.
PLoS Genet. 2018 Nov 21;14(11):e1007792. doi: 10.1371/journal.pgen.1007792. eCollection 2018 Nov.
Group II introns are ancient retroelements that significantly shaped the origin and evolution of contemporary eukaryotic genomes. These self-splicing ribozymes share a common ancestor with the telomerase enzyme, the spliceosome machinery as well as the highly abundant spliceosomal introns and non-LTR retroelements. More than half of the human genome thus consists of various elements that evolved from ancient group II introns, which altogether significantly contribute to key functions and genetic diversity in eukaryotes. Similarly, group II intron-related elements in bacteria such as abortive phage infection (Abi) retroelements, diversity generating retroelements (DGRs) and some CRISPR-Cas systems have evolved to confer important functions to their hosts. In sharp contrast, since bacterial group II introns are scarce, irregularly distributed and frequently spread by lateral transfer, they have mainly been considered as selfish retromobile elements with no beneficial function to their host. Here we unveil a new group II intron function that generates genetic diversity at the RNA level in bacterial cells. We demonstrate that Ll.LtrB, the model group II intron from Lactococcus lactis, recognizes specific sequence motifs within cellular mRNAs by base pairing, and invades them by reverse splicing. Subsequent splicing of ectopically inserted Ll.LtrB, through circularization, induces a novel trans-splicing pathway that generates exon 1-mRNA and mRNA-mRNA intergenic chimeras. Our data also show that recognition of upstream alternative circularization sites on intron-interrupted mRNAs release Ll.LtrB circles harboring mRNA fragments of various lengths at their splice junction. Intergenic trans-splicing and alternative circularization both produce novel group II intron splicing products with potential new functions. Overall, this work describes new splicing pathways in bacteria that generate, similarly to the spliceosome in eukaryotes, genetic diversity at the RNA level while providing additional functional and evolutionary links between group II introns, spliceosomal introns and the spliceosome.
内含子 II 是古老的反转录元件,它们极大地影响了当代真核生物基因组的起源和进化。这些自我剪接的核酶与端粒酶、剪接体机制以及高度丰富的剪接体内含子和非 LTR 反转录元件具有共同的祖先。因此,人类基因组的一半以上由各种源自古老内含子 II 的元件组成,这些元件共同为真核生物的关键功能和遗传多样性做出了重要贡献。同样,细菌中的内含子 II 相关元件,如 abortive phage infection (Abi) 反转录元件、diversity generating retroelements (DGRs) 和一些 CRISPR-Cas 系统,也进化出了对其宿主具有重要功能的元件。与此形成鲜明对比的是,由于细菌的内含子 II 数量稀少、分布不规则且经常通过水平转移传播,它们主要被认为是自私的反转录移动元件,对其宿主没有有益的功能。在这里,我们揭示了细菌中一种新的内含子 II 功能,即在 RNA 水平上产生遗传多样性。我们证明,来自乳球菌的模式内含子 II Ll.LtrB 通过碱基配对识别细胞 mRNA 中的特定序列基序,并通过反向剪接入侵它们。随后,通过环化,异位插入的 Ll.LtrB 的剪接诱导一种新的反式剪接途径,产生外显子 1-mRNA 和 mRNA-mRNA 基因间嵌合体。我们的数据还表明,识别内含子中断的 mRNA 上游替代环化位点会释放 Ll.LtrB 环,其剪接连接处带有各种长度的 mRNA 片段。基因间反式剪接和替代环化都会产生具有潜在新功能的新型内含子 II 剪接产物。总的来说,这项工作描述了细菌中的新剪接途径,与真核生物中的剪接体类似,在 RNA 水平上产生遗传多样性,同时为内含子 II、剪接体内含子和剪接体之间提供了额外的功能和进化联系。