Suppr超能文献

基于重叠共表达模块的阿尔茨海默病研究。

Intrinsic-overlapping co-expression module detection with application to Alzheimer's Disease.

机构信息

Department of Information Technology, North Eastern Hill University, Shillong, Meghalaya, India.

Department of Computer Applications, Sikkim University, Gangtok, Sikkim, India; Department of Information Technology, North Eastern Hill University, Shillong, Meghalaya, India.

出版信息

Comput Biol Chem. 2018 Dec;77:373-389. doi: 10.1016/j.compbiolchem.2018.10.014. Epub 2018 Nov 9.

Abstract

Genes interact with each other and may cause perturbation in the molecular pathways leading to complex diseases. Often, instead of any single gene, a subset of genes interact, forming a network, to share common biological functions. Such a subnetwork is called a functional module or motif. Identifying such modules and central key genes in them, that may be responsible for a disease, may help design patient-specific drugs. In this study, we consider the neurodegenerative Alzheimer's Disease (AD) and identify potentially responsible genes from functional motif analysis. We start from the hypothesis that central genes in genetic modules are more relevant to a disease that is under investigation and identify hub genes from the modules as potential marker genes. Motifs or modules are often non-exclusive or overlapping in nature. Moreover, they sometimes show intrinsic or hierarchical distributions with overlapping functional roles. To the best of our knowledge, no prior work handles both the situations in an integrated way. We propose a non-exclusive clustering approach, CluViaN (Clustering Via Network) that can detect intrinsic as well as overlapping modules from gene co-expression networks constructed using microarray expression profiles. We compare our method with existing methods to evaluate the quality of modules extracted. CluViaN reports the presence of intrinsic and overlapping motifs in different species not reported by any other research. We further apply our method to extract significant AD specific modules using CluViaN and rank them based the number of genes from a module involved in the disease pathways. Finally, top central genes are identified by topological analysis of the modules. We use two different AD phenotype data for experimentation. We observe that central genes, namely PSEN1, APP, NDUFB2, NDUFA1, UQCR10, PPP3R1 and a few more, play significant roles in the AD. Interestingly, our experiments also find a hub gene, PML, which has recently been reported to play a role in plasticity, circadian rhythms and the response to proteins which can cause neurodegenerative disorders. MUC4, another hub gene that we find experimentally is yet to be investigated for its potential role in AD. A software implementation of CluViaN in Java is available for download at https://sites.google.com/site/swarupnehu/publications/resources/CluViaN Software.rar.

摘要

基因相互作用,并可能导致导致复杂疾病的分子途径发生扰动。通常,不是单个基因,而是一组基因相互作用,形成网络,以共享共同的生物学功能。这样的子网络称为功能模块或基序。鉴定这些模块及其中的中央关键基因,这些基因可能负责疾病,可能有助于设计针对特定患者的药物。在这项研究中,我们考虑了神经退行性阿尔茨海默病(AD),并从功能基序分析中鉴定出潜在的致病基因。我们从遗传模块中的中心基因与正在研究的疾病更相关的假设开始,并从模块中鉴定出枢纽基因作为潜在的标记基因。基序或模块通常在性质上是非排他性的或重叠的。此外,它们有时具有内在的或层次分布,具有重叠的功能作用。据我们所知,以前没有任何工作以一种综合的方式处理这两种情况。我们提出了一种非排他性聚类方法 CluViaN(通过网络聚类),可以从使用微阵列表达谱构建的基因共表达网络中检测到内在和重叠的模块。我们将我们的方法与现有方法进行比较,以评估提取的模块的质量。CluViaN 报告了不同物种中存在的内在和重叠基序,而其他研究均未报告。我们进一步应用我们的方法从 CluViaN 中提取显著的 AD 特定模块,并根据参与疾病途径的模块中的基因数量对其进行排名。最后,通过模块的拓扑分析识别顶级中央基因。我们使用两种不同的 AD 表型数据进行实验。我们观察到中央基因,即 PSEN1、APP、NDUFB2、NDUFA1、UQCR10、PPP3R1 等,在 AD 中起着重要作用。有趣的是,我们的实验还发现了一个枢纽基因 PML,它最近被报道在可塑性、昼夜节律和对可能导致神经退行性疾病的蛋白质的反应中发挥作用。我们实验中发现的另一个枢纽基因 MUC4 尚未研究其在 AD 中的潜在作用。CluViaN 的 Java 实现软件可在 https://sites.google.com/site/swarupnehu/publications/resources/CluViaN Software.rar 下载。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验