Suppr超能文献

澳大利亚新南威尔士州慢性病原住民和非原住民出院后计划外再入院或死亡情况:一项回顾性队列研究。

Unplanned readmission or death after discharge for Aboriginal and non-Aboriginal people with chronic disease in NSW Australia: a retrospective cohort study.

作者信息

Jayakody Amanda, Oldmeadow Christopher, Carey Mariko, Bryant Jamie, Evans Tiffany, Ella Stephen, Attia John, Sanson-Fisher Rob

机构信息

Health Behaviour Research Collaborative, School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, 2308, Australia.

Priority Research Centre for Health Behaviour, University of Newcastle, Callaghan, NSW, Australia.

出版信息

BMC Health Serv Res. 2018 Nov 26;18(1):893. doi: 10.1186/s12913-018-3723-4.

Abstract

BACKGROUND

Admitted patients with chronic disease are at high risk of an unplanned hospital readmission, however, little research has examined unplanned readmission among Aboriginal people in Australia. This study aimed to examine whether rates of unplanned 28 day hospital readmission, or death, significantly differ between Aboriginal and non-Aboriginal patients in New South Wales, Australia, over a nine-year period.

METHODS

A retrospective cohort analysis of a sample of de-identified linked hospital administrative data was conducted. Eligible patients were: 1) aged ≥18 years old, 2) admitted to an acute facility in a NSW public hospital between 30th June 2005 and 1st July 2014, and 3) admitted with either cardiovascular disease, chronic respiratory disease, diabetes or renal disease. The primary composite outcome was unplanned readmission or death within 28 days of discharge. Generalized linear models and a test for trend were used to assess rates of unplanned readmission or death over time in Aboriginal and non-Aboriginal patients with chronic disease, accounting for sociodemographic variables.

RESULTS

The final study cohort included 122,145 separations corresponding to 48,252 patients (Aboriginal = 57.2%, n = 27,601; non-Aboriginal = 42.8%, n = 20,651). 13.9% (n = 16,999) of all separations experienced an unplanned readmission or death within 28 days of discharge. Death within 28 days of discharge alone accounted for only a small number of separations (1.4%; n = 1767). Over the nine-year period, Aboriginal separations had a significantly higher relative risk of an unplanned readmission or death (Relative risk = 1.34 (1.29, 1.40); p-value < 0.0001) compared with non-Aboriginal separations once adjusted for sociodemographic, disease variables and restricted to < 75 years of age. A test for trend, including an interaction between year and Aboriginal status, showed there was no statistically significant change in proportions over the nine-year period for Aboriginal and non-Aboriginal separations (p-value for trend = 0.176).

CONCLUSION

Aboriginal people with chronic disease had a significantly higher risk of unplanned readmission or death 28 days post discharge from hospital compared with non-Aboriginal people, and there has been no significant change over the nine year period. It is critical that effective interventions to reduce unplanned readmissions for Aboriginal people are identified.

摘要

背景

患有慢性病的住院患者发生非计划再次入院的风险很高,然而,很少有研究调查澳大利亚原住民的非计划再次入院情况。本研究旨在调查在澳大利亚新南威尔士州,九年间原住民和非原住民患者的28天非计划再次入院率或死亡率是否存在显著差异。

方法

对去识别化的关联医院管理数据样本进行回顾性队列分析。符合条件的患者为:1)年龄≥18岁;2)2005年6月30日至2014年7月1日期间入住新南威尔士州公立医院的急性医疗机构;3)因心血管疾病、慢性呼吸道疾病、糖尿病或肾病入院。主要复合结局为出院后28天内的非计划再次入院或死亡。使用广义线性模型和趋势检验来评估慢性病原住民和非原住民患者随时间的非计划再次入院或死亡率,并考虑社会人口统计学变量。

结果

最终研究队列包括122,145次出院,对应48,252名患者(原住民=57.2%,n = 27,601;非原住民=42.8%,n = 20,651)。所有出院患者中有13.9%(n = 16,999)在出院后28天内经历了非计划再次入院或死亡。仅出院后28天内的死亡占出院次数的比例较小(1.4%;n = 1767)。在九年期间,在对社会人口统计学、疾病变量进行调整并限制在75岁以下后,与非原住民出院相比,原住民出院发生非计划再次入院或死亡的相对风险显著更高(相对风险=1.34(1.29,1.40);p值<0.0001)。趋势检验,包括年份与原住民身份之间的相互作用,显示在九年期间,原住民和非原住民出院的比例没有统计学上的显著变化(趋势p值=0.176)。

结论

与非原住民相比,患有慢性病的原住民出院后28天内发生非计划再次入院或死亡的风险显著更高,并且在九年期间没有显著变化。确定有效的干预措施以减少原住民的非计划再次入院至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b888/6258493/5d4368b7dd43/12913_2018_3723_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验