From the Departments of Pathology (Drs De Marchi, Ibrahim, Zheng, Gocke, Eshleman, Belchis, Illei, and Lin, Ms Haley, Mr Fryer, and Ms Beierl) and Oncology (Drs Gocke and Eshleman), Johns Hopkins University School of Medicine, Baltimore, Maryland; and the Division of Hematology and Bone Marrow Transplantation, Hospital-University of Udine, Udine, Italy (Dr De Marchi).
Arch Pathol Lab Med. 2019 Feb;143(2):174-182. doi: 10.5858/arpa.2017-0495-OA. Epub 2018 Sep 7.
CONTEXT.—: Mutations within the same signature transduction pathway are redundant and, therefore, most are mutually exclusive. Laboratory errors, however, may introduce unexpected coexisting mutations.
OBJECTIVE.—: To validate coexisting mutations within epidermal growth factor receptor (EGFR), mitogen-activated protein kinase, and phosphatidylinositol 3-kinase pathways.
DESIGN.—: In this retrospective study for quality assessment of next-generation sequencing in a clinical diagnostics setting, coexisting mutations within EGFR, KRAS, NRAS, BRAF, AKT1, and PIK3CA genes were examined in 1208 non-small cell lung cancers.
RESULTS.—: EGFR mutations did not coexist with BRAF mutations, neither kinase-activated nor kinase-impaired mutations. There was a low but similar incidence (3.3%-5.1%) of PIK3CA mutations in BRAF-, EGFR-, and KRAS-mutated lung cancers and a rare incidence of coexisting KRAS and EGFR mutations detected in 1 of 1208 lung cancers (0.08%) or 1 of 226 EGFR-mutated lung cancers (0.4%). Coexisting BRAF p.V600E mutation was observed in 3 of 4 AKT1 p.E17K-mutated lung cancers. Mutational profiling of DNA reisolated from subareas with the same or different histomorphology, using an alternative assay, confirmed that coexisting mutations might present within the same (whole or subclonal) population or different populations and clarified that the so-called coexisting activating KRAS and BRAF mutations originally reported in a specimen were indeed present in separate lung nodules submitted in the same block.
CONCLUSIONS.—: The results supported that EGFR and BRAF mutations are early driver mutations in lung cancers. Guidelines from official organizations to establish standard operating procedures are warranted to validate unexpected coexisting mutations and, if clinically indicated, to determine their presence in the same or different tumor populations.
同一信号转导途径中的突变是冗余的,因此大多数是相互排斥的。然而,实验室错误可能会引入意想不到的共存突变。
验证表皮生长因子受体(EGFR)、丝裂原活化蛋白激酶和磷脂酰肌醇 3-激酶途径中的共存突变。
在这项用于评估下一代测序在临床诊断环境中的质量的回顾性研究中,我们检查了 1208 例非小细胞肺癌中 EGFR、KRAS、NRAS、BRAF、AKT1 和 PIK3CA 基因中的共存突变。
EGFR 突变与 BRAF 突变、激酶激活或激酶失活突变均不共存。在 BRAF-、EGFR-和 KRAS 突变的肺癌中,PIK3CA 突变的发生率较低(3.3%-5.1%),在 1208 例肺癌中罕见共存 KRAS 和 EGFR 突变,在 226 例 EGFR 突变的肺癌中罕见共存 KRAS 和 EGFR 突变,发生率为 1/1208(0.08%)或 1/226(0.4%)。在 4 例 AKT1 p.E17K 突变的肺癌中观察到共存 BRAF p.V600E 突变。使用替代检测方法对具有相同或不同组织形态学的亚区重新分离的 DNA 进行突变分析,证实共存突变可能存在于同一(全或亚克隆)群体或不同群体中,并澄清最初在同一标本中报告的共存激活 KRAS 和 BRAF 突变实际上存在于同一送检的不同肺结节中。
这些结果支持 EGFR 和 BRAF 突变是肺癌的早期驱动突变。有必要制定来自官方组织的指南来验证意外共存突变,如果临床上有必要,还需要确定它们是否存在于同一或不同的肿瘤群体中。