Institute of Bioengineering and Nanotechnology, #04-01, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore.
Institute of Bioengineering and Nanotechnology, #04-01, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University Health System, MD9-03-03, 2 Medical Drive, Singapore 117597, Singapore.
Biomaterials. 2019 Feb;192:377-391. doi: 10.1016/j.biomaterials.2018.11.016. Epub 2018 Nov 16.
Liver macrophages, Kupffer cells (KCs), play a critical role in drug-induced liver injury (DILI) and liver diseases including cholestasis, liver fibrosis and viral hepatitis. Application of KCs in in vitro models of DILI and liver diseases is hindered due to limited source of human KCs. In vivo, KCs originate from MYB-independent macrophage progenitors, which differentiate into liver-specific macrophages in response to hepatic cues in the liver. Here, we recapitulated KCs ontogeny by differentiation of MYB-independent iPSCs to macrophage-precursors and exposing them to hepatic cues to generate iPSC-derived KCs (iKCs). iKCs expressed macrophage markers (CD11/CD14/CD68/CD163/CD32) at 0.3-5 folds of primary adult human KCs (pKCs) and KC-specific CLEC-4F, ID1 and ID3. iKCs phagocytosed and secreted IL-6 and TNFα upon stimulation at levels similar to pKCs but different from non-liver macrophages. Hepatocyte-iKCs co-culture model was more sensitive in detecting hepatotoxicity induced by inflammation-associated drugs, Acetaminophen and Trovafloxacin, and Chlorpromazine-induced cholestasis when compared to hepatocytes alone. Overall, iKCs were mature, liver-specific and functional. Furthermore, donor-matched iKCs and iPSC-hepatocyte co-culture exhibited minimal non-specific background response compared to donor-mismatched counterpart. iKCs offer a mature renewable human cell source for liver-specific macrophages, useful in developing in vitro model to study DILI and liver diseases such as cholestasis.
肝脏巨噬细胞,即库普弗细胞(KCs),在药物性肝损伤(DILI)和包括胆汁淤积、肝纤维化和病毒性肝炎在内的肝脏疾病中发挥着关键作用。由于人类 KCs 来源有限,其在 DILI 和肝脏疾病的体外模型中的应用受到阻碍。在体内,KCs 起源于 MYB 非依赖性巨噬细胞前体,这些前体在肝脏中对肝内信号作出反应,分化为肝脏特异性巨噬细胞。在这里,我们通过将 MYB 非依赖性 iPSC 分化为巨噬细胞前体,并暴露于肝内信号来生成 iPSC 衍生的 KCs(iKCs),从而重现了 KCs 的发生。iKCs 表达的巨噬细胞标志物(CD11/CD14/CD68/CD163/CD32)是原代成人人类 KCs(pKCs)的 0.3-5 倍,且 KC 特异性 CLEC-4F、ID1 和 ID3 的表达也增加。iKCs 在受到刺激时会吞噬和分泌与 pKCs 相似但与非肝脏巨噬细胞不同的 IL-6 和 TNFα。与单独的肝细胞相比,肝细胞-iKCs 共培养模型在检测与炎症相关的药物(如对乙酰氨基酚和曲伐沙星)和氯丙嗪诱导的胆汁淤积引起的肝毒性时更敏感。总的来说,iKCs 是成熟的、肝脏特异性的和功能性的。此外,与供体不匹配的 iKCs 相比,供体匹配的 iKCs 和 iPSC-肝细胞共培养显示出最小的非特异性背景反应。iKCs 为肝脏特异性巨噬细胞提供了成熟的可再生人类细胞来源,可用于开发体外模型以研究 DILI 和包括胆汁淤积在内的肝脏疾病。