Suppr超能文献

基于地统计学的多模型方法评估大型地下水体中天然背景浓度的空间分布。

Geostatistical multimodel approach for the assessment of the spatial distribution of natural background concentrations in large-scale groundwater bodies.

机构信息

Politecnico di Milano, Dipartimento di Ingegneria Civile e Ambientale, Piazza L. Da Vinci 32, 20133, Milano, Italy.

Politecnico di Milano, Dipartimento di Ingegneria Civile e Ambientale, Piazza L. Da Vinci 32, 20133, Milano, Italy.

出版信息

Water Res. 2019 Feb 1;149:522-532. doi: 10.1016/j.watres.2018.09.049. Epub 2018 Sep 29.

Abstract

Quantification of the (spatially distributed) natural contributions to the chemical signature of groundwater resources is an emerging issue in the context of competitive groundwater uses as well as water regulation and management frameworks. Here, we illustrate a geostatistically-based approach for the characterization of spatially variable Natural Background Levels (NBLs) of target chemical species in large-scale groundwater bodies yielding evaluations of local probabilities of exceedance of a given threshold concentration. The approach is exemplified by considering three selected groundwater bodies and focusing on the evaluation of NBLs of ammonium and arsenic, as detected from extensive time series of concentrations collected at monitoring boreholes. Our study is motivated by the observation that reliance on a unique NBL value as representative of the natural geochemical signature of a reservoir can mask the occurrence of localized areas linked to diverse strengths of geogenic contributions to the groundwater status. We start from the application of the typical Pre-Selection (PS) methodology to the scale of each observation borehole to identify local estimates of NBL values. The latter are subsequently subject to geostatistical analysis to obtain estimates of their spatial distribution and the associated uncertainty. A multimodel framework is employed to interpret available data. The impact of alternative variogram models on the resulting spatial distributions of NBLs is assessed through probabilistic weights based on model identification criteria. Our findings highlight that assessing possible impacts of anthropogenic activities on groundwater environments with the aim of designing targeted solutions to restore a good groundwater quality status should consider a probabilistic description of the spatial distribution of NBLs. The latter is useful to provide enhanced information upon which one can then build decision-making protocols embedding the quantification of the associated uncertainty.

摘要

量化地下水资源化学特征的(空间分布的)天然本底贡献是一个新兴问题,特别是在地下水竞争利用以及水调控和管理框架下。在这里,我们展示了一种基于地统计学的方法,用于描述大规模地下水体中目标化学物质的空间变异性天然背景水平(NBL),从而评估给定阈值浓度的局部超标概率。该方法通过考虑三个选定的地下水体,并集中评估铵和砷的 NBL 来举例说明,这些 NBL 是从监测钻孔中收集的大量浓度时间序列中检测到的。我们的研究是受到这样一种观察的启发,即依赖于唯一的 NBL 值作为储层天然地球化学特征的代表,可能会掩盖与地下水状况的地质成因贡献强度不同的局部地区的出现。我们从每个观测钻孔的典型预选(PS)方法的应用开始,以确定 NBL 值的局部估计。然后,对这些值进行地统计学分析,以获得其空间分布和相关不确定性的估计值。采用多模型框架来解释可用数据。通过基于模型识别标准的概率权重来评估替代变差函数模型对 NBL 空间分布的影响。我们的研究结果强调,评估人为活动对地下水环境的可能影响,目的是设计有针对性的解决方案来恢复良好的地下水质量状况,应考虑 NBL 空间分布的概率描述。后者有助于提供增强的信息,然后可以在其中构建嵌入相关不确定性量化的决策协议。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验