Eder S D, Salvador Palau A, Kaltenbacher T, Bracco G, Holst B
Department of Physics and Technology, University of Bergen, Allégaten 55, 5007 Bergen, Norway.
Department of Engineering, Institute for Manufacturing, University of Cambridge, Cambridge CB3 0FS, United Kingdom.
Rev Sci Instrum. 2018 Nov;89(11):113301. doi: 10.1063/1.5044203.
Supersonic molecular beams are used in many applications ranging from spectroscopy and matter wave optics to surface science. The experimental setup typically includes a conically shaped, collimating aperture, the skimmer. It has been reported that microskimmers with diameters below 10 m produce beams with significantly broader velocity distributions (smaller speed ratios) than larger skimmers. Various explanations for this phenomenon have been proposed, but up till now, only a limited amount of data has been available. Here we present a systematic study of the velocity distribution in microskimmer supersonic expansion helium beams. We compare a 4 m diameter skimmer with a 390 m diameter skimmer for room temperature and cooled beams in the pressure range 11-181 bars. Our measurements show that for properly aligned skimmers, the only difference is that the most probable velocity for a given pressure and temperature is slightly lower for a microskimmed beam. We ascribed this to the comparatively narrow and long geometry of the microskimmers which can lead to local pressure variations along the skimmer channel. We compare our measurements to a model for the supersonic expansion and obtain good agreement between the experiments and simulations.
超音速分子束被应用于许多领域,从光谱学、物质波光学到表面科学。实验装置通常包括一个锥形的准直孔径,即撇油器。据报道,直径小于10微米的微型撇油器产生的分子束速度分布比大型撇油器的速度分布要宽得多(速度比更小)。针对这一现象已经提出了各种解释,但到目前为止,可用的数据量有限。在这里,我们对微型撇油器超音速膨胀氦束中的速度分布进行了系统研究。我们将直径为4微米的撇油器与直径为390微米的撇油器进行比较,研究对象为室温及冷却状态下、压力范围在11 - 181巴的分子束。我们的测量结果表明,对于正确对准的撇油器,唯一的区别在于,对于给定的压力和温度,微型撇油器产生的分子束的最概然速度略低。我们将此归因于微型撇油器相对狭窄且较长的几何形状,这可能导致沿撇油器通道的局部压力变化。我们将测量结果与超音速膨胀模型进行比较,实验与模拟结果吻合良好。