Yang Lili, Gao Yanbo, Wu Yanjie, Xue Xiangxin, Wang Fengyou, Sui Yingrui, Sun Yunfei, Wei Maobin, Liu Xiaoyan, Liu Huilian
Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education , Jilin Normal University , Changchun 130013 , China.
National Demonstration Center for Experimental Physics Education , Jilin Normal University , Siping 136000 , PR China.
ACS Appl Mater Interfaces. 2019 Jan 9;11(1):792-801. doi: 10.1021/acsami.8b17338. Epub 2018 Dec 26.
Chlorobenzene and diethyl ether were chosen as an antisolvent to control the crystallization of CHNHPbI. Under the condition of similar crystallization for both perovskite films, the obvious larger short-circuit current density for CHNHPbI film treated by chlorobenzene prompted us to unveil the roles of chlorobenzene in the perovskite films via adjusting the dropping amount of chlorobenzene. A novel insight of chlorobenzene function was revealed, that is, gradient diluted chlorine doping in the CHNHPbI film, which forms a gradient band gap in the perovskite films, prompts photogenerated carriers accumulating at the interface, makes the electron transport faster, and effectively enhances the power conversion efficiency (PCE) of solar cells. The maximum PCE of 20.58% has been achieved under standard AM1.5 conditions. Moreover, this technique exhibits very high reproducibility, and 20 devices fabricated in one batch can yield an average PCE of 20.31%.
选择氯苯和乙醚作为反溶剂来控制CHNHPbI的结晶。在两种钙钛矿薄膜结晶条件相似的情况下,用氯苯处理的CHNHPbI薄膜具有明显更大的短路电流密度,这促使我们通过调整氯苯的滴加量来揭示氯苯在钙钛矿薄膜中的作用。揭示了氯苯功能的一个新见解,即在CHNHPbI薄膜中进行梯度稀释氯掺杂,这在钙钛矿薄膜中形成梯度带隙,促使光生载流子在界面处积累,使电子传输更快,并有效提高太阳能电池的功率转换效率(PCE)。在标准AM1.5条件下,已实现20.58%的最大PCE。此外,该技术具有很高的重现性,一批制备的20个器件平均PCE可达20.31%。