Huang Qun, Xu Sheng, Xiao Lei, He Pingge, Liu Jiatu, Yang Ying, Wang Peng, Huang Baiyun, Wei Weifeng
State Key Laboratory of Powder Metallurgy , Central South University , Changsha , Hunan 410083 , P. R. China.
National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences and Collaborative, Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , P. R. China.
Inorg Chem. 2018 Dec 17;57(24):15584-15591. doi: 10.1021/acs.inorgchem.8b02931. Epub 2018 Dec 6.
Layered transition-metal oxides are one kind of the most promising cathode materials for sodium-ion batteries. In this study, we propose a strategy to enhance the electrochemical properties of P3-type manganese-based layered oxide cathode by introducing a small amount of layered P2 and Li-O'3 phases. Powder X-ray diffraction (PXRD) structural refinement and aberration-corrected scanning transmission electron microscopy (STEM) are performed to confirm the microstructures of different samples. PXRD refinement results show that the elevated annealing temperature leads to a partial conversion of the P3 phase to the P2 phase and the addition of lithium results in the formation of a new O'3 phase in the P3/P2-layered matrix. STEM results identify the intergrowth of P3/P2 and P3/P2/O'3 in biphasic and triphasic materials, respectively. Electron energy loss spectroscopy verifies that the alkali metal layer in the O'3 phase is occupied by the lithium ion. The intergrowth of biphasic and triphasic materials in these layered P3/P2 and P3/P2/O'3 hybrid structures brings forth a positive effect on the electrochemical properties. In particular, the formation of P3/P2/O'3-intergrown hybrid structures greatly improves the cycling stability of the P3 phase that the capacity retention of P3/P2/O'3 hybrid structures remains 78%, while capacity retention of the pure P3 phase is only 54.1% after 50 cycles at a rate of 0.2 C, and the rate performance of the P3 phase has also been enhanced.
层状过渡金属氧化物是钠离子电池中最有前景的阴极材料之一。在本研究中,我们提出了一种通过引入少量层状P2相和Li-O'3相来增强P3型锰基层状氧化物阴极电化学性能的策略。进行了粉末X射线衍射(PXRD)结构精修和像差校正扫描透射电子显微镜(STEM)以确认不同样品的微观结构。PXRD精修结果表明,升高的退火温度导致P3相部分转变为P2相,而锂的添加导致在P3/P2层状基体中形成新的O'3相。STEM结果分别确定了双相和三相材料中P3/P2和P3/P2/O'3的共生情况。电子能量损失谱验证了O'3相中的碱金属层被锂离子占据。这些层状P3/P2和P3/P2/O'3混合结构中双相和三相材料的共生对电化学性能产生了积极影响。特别是,P3/P2/O'3共生混合结构的形成极大地提高了P3相的循环稳定性,在0.2 C的电流密度下循环50次后,P3/P2/O'3混合结构的容量保持率仍为78%,而纯P3相的容量保持率仅为54.1%,并且P3相的倍率性能也得到了增强。