Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, People's Republic of China.
Phys Med Biol. 2019 Jan 10;64(2):025013. doi: 10.1088/1361-6560/aaf5f1.
A high volume rate and high performance ultrasound imaging method based on a matrix array is proposed by using compressed sensing (CS) to reconstruct the complete dataset of synthetic transmit aperture (STA) from three-dimensional (3D) diverging wave transmissions (i.e. 3D CS-STA). Hereto, a series of apodized 3D diverging waves are transmitted from a fixed virtual source, with the ith row of a Hadamard matrix taken as the apodization coefficients in the ith transmit event. Then CS is used to reconstruct the complete dataset, based on the linear relationship between the backscattered echoes and the complete dataset of 3D STA. Finally, standard STA beamforming is applied on the reconstructed complete dataset to obtain the volumetric image. Four layouts of element numbering for apodizations and transmit numbers of 16, 32 and 64 are investigated through computer simulations and phantom experiments. Furthermore, the proposed 3D CS-STA setups are compared with 3D single-line-transmit (SLT) and 3D diverging wave compounding (DWC). The results show that, (i) 3D CS-STA has competitive lateral resolutions to 3D STA, and their contrast ratios (CRs) and contrast-to-noise ratios (CNRs) approach to those of 3D STA as the number of transmit events increases in noise-free condition. (ii) the tested 3D CS-STA setups show good robustness in complete dataset reconstruction in the presence of different levels of noise. (iii) 3D CS-STA outperforms 3D SLT and 3D DWC. More specifically, the 3D CS-STA setup with 64 transmit events and the Random layout achieves ~31% improvement in lateral resolution, ~14% improvement in ratio of the estimated-to-true cystic areas, a higher volume rate, and competitive CR/CNR when compared with 3D DWC. The results demonstrate that 3D CS-STA has great potential of providing high quality volumetric image with a higher volume rate.
提出了一种基于矩阵阵元的高帧率、高性能超声成像方法,该方法利用压缩感知(CS)从三维(3D)发散波发射(即 3D CS-STA)中重建完整的合成发射孔径(STA)数据集。在此,从固定虚拟源发射一系列带通 3D 发散波,Hadamard 矩阵的第 i 行作为第 i 次发射事件中的变迹系数。然后,基于回波与 3D STA 完整数据集之间的线性关系,利用 CS 重建完整数据集。最后,在重建的完整数据集上应用标准 STA 波束形成,以获得体积图像。通过计算机模拟和体模实验研究了元素编号和发射数量为 16、32 和 64 的四种变迹和发射布局。此外,还将提出的 3D CS-STA 方案与 3D 单线发射(SLT)和 3D 发散波合成(DWC)进行了比较。结果表明,(i)3D CS-STA 具有与 3D STA 相当的横向分辨率,并且在无噪声条件下,随着发射事件数量的增加,其对比度比(CR)和对比度噪声比(CNR)接近 3D STA。(ii)在所测试的 3D CS-STA 方案中,在存在不同水平噪声的情况下,对完整数据集的重建具有良好的鲁棒性。(iii)3D CS-STA 优于 3D SLT 和 3D DWC。具体而言,与 3D DWC 相比,具有 64 个发射事件和随机布局的 3D CS-STA 方案在横向分辨率方面提高了约 31%,在估计到真实囊肿区域的比值方面提高了约 14%,体积率更高,CR/CNR 具有竞争力。结果表明,3D CS-STA 具有提供高质量体积图像和更高体积率的巨大潜力。