Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia.
BJU Int. 2019 Jun;123(6):1020-1030. doi: 10.1111/bju.14648. Epub 2019 Jan 28.
OBJECTIVES: To develop a registration framework for correlating positron emission tomography/computed tomography (PET/CT) images with multiparametric magnetic resonance imaging (mpMRI) and histology of the prostate, thereby enabling voxel-wise analysis of imaging parameters. PATIENTS AND METHODS: In this prospective proof-of-concept study, nine patients scheduled for radical prostatectomy underwent mpMRI and PET/CT imaging before surgery. One had PET imaging using F-fluoromethylcholine, five using Ga-labelled prostate-specific membrane antigen (PSMA)-HBED-CC (PMSA-11), and three using a trial Ga-labelled THP-PSMA tracer. PET/CT data were co-registered with mpMRI via the CT scan and an in vivo three-dimensional T2-weighted (T2w) MRI, and then co-registered with ground truth histology data using ex vivo MRI of the prostate specimen. Maximum and mean standardised uptake values (SUV and SUV ) were extracted from PET data using tumour annotations from histology, and Kolmogorov-Smirnov tests were used to compare between tumour- and benign-voxel values. Correlation analysis was performed between mpMRI and PET SUV tumour voxel values using Pearson's correlation coefficient and R statistics. RESULTS: PET/CT data from all nine patients were successfully registered with mpMRI and histology data. SUV and SUV ranged from 2.21 to 12.11 and 1.08 to 4.21, respectively. All patients showed the PET SUV values in benign and tumour voxels were from statistically different distributions. Correlation analysis showed no consistent trend between the T2w or apparent diffusion coefficient values and PET SUV. However, parameters from dynamic contrast-enhanced (DCE) MRI including the maximum enhancement, volume transfer constant (K ), and the initial area under the contrast agent concentration curve for the first 60 s after injection (iAUGC60), showed consistent positive correlations with PET SUV. Furthermore, R2* values from blood oxygen level-dependent (BOLD) MRI showed consistent negative correlations with PET SUV-voxel values. CONCLUSION: We have developed a novel framework for registering and correlating PET/CT data at a voxel-level with mpMRI and histology. Despite registration uncertainties, perfusion and oxygenation parameters from DCE MRI and BOLD imaging showed correlations with PET SUV. Further analysis will be performed on a larger patient cohort to quantify these proof-of-concept findings. Improved understanding of the correlation between mpMRI and PET will provide supportive information for focal therapy planning of the prostate.
目的:开发一种将正电子发射断层扫描/计算机断层扫描(PET/CT)图像与前列腺多参数磁共振成像(mpMRI)和组织学相关联的配准框架,从而实现对成像参数的体素分析。
方法:在这项前瞻性概念验证研究中,九名计划接受根治性前列腺切除术的患者在手术前接受了 mpMRI 和 PET/CT 成像。一名患者使用 F-氟甲基胆碱进行 PET 成像,五名患者使用 Ga 标记的前列腺特异性膜抗原(PSMA)-HBED-CC(PSMA-11)进行 PET 成像,三名患者使用 Ga 标记的 THP-PSMA 示踪剂进行 PET 成像。通过 CT 扫描和体内三维 T2 加权(T2w)MRI 对 PET/CT 数据进行配准,然后使用前列腺标本的体外 MRI 对配准数据与真实组织学数据进行配准。从组织学肿瘤标注中提取 PET 数据的最大和平均标准化摄取值(SUV 和 SUV ),并使用 Kolmogorov-Smirnov 检验比较肿瘤和良性体素值之间的差异。使用 Pearson 相关系数和 R 统计分析 mpMRI 和 PET SUV 肿瘤体素值之间的相关性。
结果:九名患者的 PET/CT 数据均成功与 mpMRI 和组织学数据配准。SUV 和 SUV 分别为 2.21 至 12.11 和 1.08 至 4.21。所有患者的良性和肿瘤体素的 PET SUV 值均来自于统计学上不同的分布。相关性分析显示,T2w 或表观扩散系数值与 PET SUV 之间没有一致的趋势。然而,来自动态对比增强(DCE)MRI 的参数,包括最大增强、容积转移常数(K )和注射后 60 秒内对比剂浓度曲线的初始面积(iAUGC60),与 PET SUV 呈一致的正相关。此外,血氧水平依赖(BOLD)MRI 的 R2* 值与 PET SUV 体素值呈一致的负相关。
结论:我们开发了一种新的框架,用于以体素水平将 PET/CT 数据与 mpMRI 和组织学进行配准和关联。尽管存在配准不确定性,但 DCE MRI 和 BOLD 成像的灌注和氧合参数与 PET SUV 呈相关性。将在更大的患者队列中进一步分析这些概念验证结果,以量化这些发现。对 mpMRI 和 PET 之间相关性的进一步理解将为前列腺的局灶性治疗计划提供支持性信息。
Abdom Radiol (NY). 2025-6-3