Suppr超能文献

利用辅助措施:用于临床研究预测建模的深度多任务神经网络。

Leveraging auxiliary measures: a deep multi-task neural network for predictive modeling in clinical research.

机构信息

Department of Computer Science, Wayne State University, Detroit, MI, USA.

Department of Emergency Medicine, Wayne State University, Detroit, MI, USA.

出版信息

BMC Med Inform Decis Mak. 2018 Dec 12;18(Suppl 4):126. doi: 10.1186/s12911-018-0676-9.

Abstract

BACKGROUND

Accurate predictive modeling in clinical research enables effective early intervention that patients are most likely to benefit from. However, due to the complex biological nature of disease progression, capturing the highly non-linear information from low-level input features is quite challenging. This requires predictive models with high-capacity. In practice, clinical datasets are often of limited size, bringing danger of overfitting for high-capacity models. To address these two challenges, we propose a deep multi-task neural network for predictive modeling.

METHODS

The proposed network leverages clinical measures as auxiliary targets that are related to the primary target. The predictions for the primary and auxiliary targets are made simultaneously by the neural network. Network structure is specifically designed to capture the clinical relevance by learning a shared feature representation between the primary and auxiliary targets. We apply the proposed model in a hypertension dataset and a breast cancer dataset, where the primary tasks are to predict the left ventricular mass indexed to body surface area and the time of recurrence of breast cancer. Moreover, we analyze the weights of the proposed neural network to rank input features for model interpretability.

RESULTS

The experimental results indicate that the proposed model outperforms other different models, achieving the best predictive accuracy (mean squared error 199.76 for hypertension data, 860.62 for Wisconsin prognostic breast cancer data) with the ability to rank features according to their contributions to the targets. The ranking is supported by previous related research.

CONCLUSION

We propose a novel effective method for clinical predictive modeling by combing the deep neural network and multi-task learning. By leveraging auxiliary measures clinically related to the primary target, our method improves the predictive accuracy. Based on featue ranking, our model is interpreted and shows consistency with previous studies on cardiovascular diseases and cancers.

摘要

背景

临床研究中准确的预测建模能够实现有效的早期干预,使患者最有可能从中受益。然而,由于疾病进展的复杂生物学性质,从低层次输入特征中捕捉高度非线性信息极具挑战性。这就需要具有高容量的预测模型。在实践中,临床数据集通常规模有限,这给高容量模型带来了过度拟合的危险。为了解决这两个挑战,我们提出了一种用于预测建模的深度多任务神经网络。

方法

所提出的网络利用临床测量值作为与主要目标相关的辅助目标。神经网络同时对主要目标和辅助目标进行预测。网络结构专门设计用于通过学习主要目标和辅助目标之间的共享特征表示来捕捉临床相关性。我们将所提出的模型应用于高血压数据集和乳腺癌数据集,其中主要任务是预测左心室质量指数和乳腺癌复发时间。此外,我们分析了所提出的神经网络的权重,以对输入特征进行排序,从而实现模型可解释性。

结果

实验结果表明,所提出的模型优于其他不同的模型,具有最佳的预测准确性(高血压数据的均方误差为 199.76,威斯康星州预后乳腺癌数据为 860.62),并且能够根据特征对目标的贡献对特征进行排序。这种排序得到了之前相关研究的支持。

结论

我们通过结合深度神经网络和多任务学习提出了一种新的有效的临床预测建模方法。通过利用与主要目标在临床上相关的辅助措施,我们的方法提高了预测准确性。基于特征排序,我们的模型具有可解释性,并与心血管疾病和癌症的先前研究一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验