Suppr超能文献

II 型钠-磷酸盐共转运蛋白与鱼类的磷酸盐平衡。

Type II Na-phosphate Cotransporters and Phosphate Balance in Teleost Fish.

机构信息

Laboratory of General Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy.

Epithelial Research Group, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK.

出版信息

Pflugers Arch. 2019 Jan;471(1):193-212. doi: 10.1007/s00424-018-2239-4. Epub 2018 Dec 12.

Abstract

Teleost fish are excellent models to study the phylogeny of the slc34 gene family, Slc34-mediated phosphate (P) transport and how Slc34 transporters contribute P homeostasis. Fish need to accumulate P from the diet to sustain growth. Much alike in mammals, intestinal uptake in fish is partly a paracellular and partly a Slc34-mediated transcellular process. Acute regulation of P balance is achieved in the kidney via a combination of Slc34-mediated secretion and/or reabsorption. A great plasticity is observed in how various species perform and combine the different processes of secretion and reabsorption. A reason for this diversity is found in one or two whole genome duplication events followed by potential gene loss; consequently, teleosts exhibit distinctly different repertoires of Slc34 transporters. Moreover, due to habitats with vastly different salinity, teleosts face the challenge of either preserving water in a hyperosmotic environment (seawater) or excreting water in hypoosmotic freshwater. An additional challenge in understanding teleost P homeostasis are the genome duplication and retention events that diversified peptide hormones such as parathyroid hormone and stanniocalcin. Dietary P and non-coding RNAs also regulate the expression of piscine Slc34 transporters. The adaptive responses of teleost Slc34 transporters to e.g. P diets and vitamin D are informative in the context of comparative physiology, but also relevant in applied physiology and aquaculture. In fact, P is essential for teleost fish growth but it also exerts significant adverse consequences if over-supplied. Thus, investigating Slc34 transporters helps tuning the physiology of commercially valuable teleost fish in a confined environment.

摘要

硬骨鱼类是研究 slc34 基因家族的系统发育、slc34 介导的磷酸盐(p)转运以及 slc34 转运体如何维持 p 稳态的理想模型。鱼类需要从饮食中积累 p 来维持生长。与哺乳动物非常相似,鱼类肠道吸收部分是通过细胞旁途径,部分是通过 slc34 介导的细胞内途径。肾脏通过 slc34 介导的分泌和/或重吸收的组合来实现 p 平衡的急性调节。不同物种如何执行和组合不同的分泌和重吸收过程存在很大的差异。这种多样性的一个原因是发生了一次或两次全基因组复制事件,随后可能导致基因丢失;因此,硬骨鱼类表现出明显不同的 slc34 转运体库。此外,由于栖息地的盐度差异很大,硬骨鱼类面临着在高渗环境(海水)中保持水分或在低渗淡水中排泄水分的挑战。了解硬骨鱼类 p 稳态的另一个挑战是肽激素(如甲状旁腺激素和 stanniocalcin)的基因组复制和保留事件。膳食 p 和非编码 rna 也调节鱼类 slc34 转运体的表达。硬骨鱼类 slc34 转运体对 p 饮食和维生素 d 的适应性反应在比较生理学中具有信息性,但在应用生理学和水产养殖中也具有相关性。事实上,p 对硬骨鱼类的生长是必不可少的,但如果过量供应,也会产生显著的不良后果。因此,研究 slc34 转运体有助于在封闭环境中调节商业价值高的硬骨鱼类的生理学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验