Suppr超能文献

非空环境下 RSS 数据优化与 DFL 定位研究。

Research on RSS Data Optimization and DFL Localization for Non-Empty Environments.

机构信息

Lab of Artificial Networks, Institute of Semiconductors, CAS, Beijing 100083, China.

CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai 200031, China.

出版信息

Sensors (Basel). 2018 Dec 13;18(12):4419. doi: 10.3390/s18124419.

Abstract

Device-free localization (DFL) is a new technique which can estimate the target location through analyzing the shadowing effect on surrounding radio frequency (RF) links. In a relatively complex environment, the influences of random disturbance and the multipath effect are more serious. There are kinds of noises and disturbances in the received signal strength (RSS) data of RF links and the data itself can even be distorted, which will seriously affect the DFL accuracy. Most of the common filtering methods adopted in DFL field are not targeted and the filtering effects are unstable. This paper researches the characteristics of RSS data with random disturbances and proposes two-dimensional double correlation (TDDC) distributed wavelet filtering. It can filter out the random disturbances and noise while preserving the RSS fluctuations which are helpful for the DFL, thus improving the quality of RSS data and localization accuracy. Furthermore, RSS variation rules for the links are different in complex environments and hence, it is difficult for the collected training samples to cover all possible patterns. Therefore, a single machine learning model with poor generalization ability finds it difficult to achieve ideal localization results. In this paper, the Adaboost.M2 ensemble learning model based on the Gini decision tree (GDTE) is proposed to improve the generalization ability for unknown patterns. Extensive experiments performed in two different drawing rooms demonstrate that the TDDC distributed wavelet filtering and the GDTE localization model have obvious advantages compared with other methods. The localization accuracy rates of 87% and 95% can be achieved respectively in the two environments.

摘要

无设备定位(DFL)是一种新技术,它可以通过分析周围射频(RF)链路的阴影效应来估计目标位置。在相对复杂的环境中,随机干扰和多径效应的影响更加严重。RF 链路的接收信号强度(RSS)数据中存在各种噪声和干扰,数据本身甚至可能会发生变形,这将严重影响 DFL 的准确性。DFL 领域中采用的大多数常见滤波方法针对性不强,滤波效果不稳定。本文研究了具有随机干扰的 RSS 数据的特征,并提出了二维双相关(TDDC)分布式小波滤波。它可以滤除随机干扰和噪声,同时保留 RSS 波动,这有助于 DFL,从而提高 RSS 数据的质量和定位精度。此外,在复杂环境中,链路的 RSS 变化规律不同,因此,收集的训练样本很难涵盖所有可能的模式。因此,具有较差泛化能力的单一机器学习模型很难实现理想的定位结果。本文提出了基于基尼决策树(GDTE)的 Adaboost.M2 集成学习模型,以提高对未知模式的泛化能力。在两个不同的客厅中进行的广泛实验表明,TDDC 分布式小波滤波和 GDTE 定位模型与其他方法相比具有明显的优势。在这两种环境下,定位精度分别可以达到 87%和 95%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ab6/6308607/748cf266870b/sensors-18-04419-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验