Suppr超能文献

使用靶向生物传感器对细胞内游离烟酰胺腺嘌呤二核苷酸进行流式细胞术分析

Flow Cytometry Analysis of Free Intracellular NAD Using a Targeted Biosensor.

作者信息

Eller Jared M, Stewart Melissa L, Slepian Alexandria J, Markwardt Sheila, Wiedrick Jack, Cohen Michael S, Goodman Richard H, Cambronne Xiaolu A

机构信息

Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas.

Vollum Institute, Oregon Health & Science University, Portland, Oregon.

出版信息

Curr Protoc Cytom. 2019 Apr;88(1):e54. doi: 10.1002/cpcy.54. Epub 2018 Dec 17.

Abstract

Flow cytometry approaches combined with a genetically encoded targeted fluorescent biosensor are used to determine the subcellular compartmental availability of the oxidized form of nicotinamide adenine dinucleotide (NAD ). The availability of free NAD can affect the activities of NAD -consuming enzymes such as sirtuin, PARP/ARTD, and cyclic ADPR-hydrolase family members. Many methods for measuring the NAD available to these enzymes are limited because they cannot determine free NAD as it exists in various subcellular compartments distinctly from bound NAD or NADH. Here, an approach to express the sensor in mammalian cells, monitor NAD -dependent fluorescence intensity changes using flow cytometry approaches, and analyze data obtained is described. The benefit of flow cytometry approaches with the NAD sensor is the ability to monitor compartmentalized free NAD fluctuations simultaneously within many cells, which greatly facilitates analyses and calibration. © 2018 by John Wiley & Sons, Inc.

摘要

将流式细胞术方法与基因编码的靶向荧光生物传感器相结合,用于确定烟酰胺腺嘌呤二核苷酸(NAD)氧化形式在亚细胞区室中的可利用性。游离NAD的可利用性会影响诸如沉默调节蛋白、聚(ADP-核糖)聚合酶/凋亡相关因子(PARP/ARTD)以及环ADP核糖水解酶家族成员等消耗NAD的酶的活性。许多用于测量这些酶可利用的NAD的方法存在局限性,因为它们无法将游离NAD与结合型NAD或NADH区分开来,从而无法明确其在各种亚细胞区室中的存在情况。在此,描述了一种在哺乳动物细胞中表达该传感器、使用流式细胞术方法监测NAD依赖性荧光强度变化并分析所得数据的方法。使用NAD传感器的流式细胞术方法的优势在于能够同时监测多个细胞内亚细胞区室化的游离NAD波动情况,这极大地促进了分析和校准工作。© 2018约翰威立父子出版公司

相似文献

1
Flow Cytometry Analysis of Free Intracellular NAD Using a Targeted Biosensor.
Curr Protoc Cytom. 2019 Apr;88(1):e54. doi: 10.1002/cpcy.54. Epub 2018 Dec 17.
2
Methods for Using a Genetically Encoded Fluorescent Biosensor to Monitor Nuclear NAD<sup/>.
Methods Mol Biol. 2018;1813:391-414. doi: 10.1007/978-1-4939-8588-3_26.
4
Biosensor reveals multiple sources for mitochondrial NAD⁺.
Science. 2016 Jun 17;352(6292):1474-7. doi: 10.1126/science.aad5168.
5
Anti-proliferation effect of APO866 on C6 glioblastoma cells by inhibiting nicotinamide phosphoribosyltransferase.
Eur J Pharmacol. 2012 Jan 15;674(2-3):163-70. doi: 10.1016/j.ejphar.2011.11.017. Epub 2011 Nov 19.
6
Genetically encoded fluorescent indicator for imaging NAD(+)/NADH ratio changes in different cellular compartments.
Biochim Biophys Acta. 2014 Mar;1840(3):951-7. doi: 10.1016/j.bbagen.2013.11.018. Epub 2013 Nov 25.
10
Real-time assessment of the metabolic profile of living cells with genetically encoded NADH sensors.
Methods Enzymol. 2014;542:349-67. doi: 10.1016/B978-0-12-416618-9.00018-2.

引用本文的文献

1
The dynamics and regulation of PARP1 and PARP2 in response to DNA damage and during replication.
DNA Repair (Amst). 2024 Aug;140:103690. doi: 10.1016/j.dnarep.2024.103690. Epub 2024 May 25.
2
Dynamics of SLC25A51 reveal preference for oxidized NAD and substrate led transport.
EMBO Rep. 2023 Oct 9;24(10):e56596. doi: 10.15252/embr.202256596. Epub 2023 Aug 14.
3
SLC25A51 is a mammalian mitochondrial NAD transporter.
Nature. 2020 Dec;588(7836):174-179. doi: 10.1038/s41586-020-2741-7. Epub 2020 Sep 9.

本文引用的文献

1
Methods for Using a Genetically Encoded Fluorescent Biosensor to Monitor Nuclear NAD<sup/>.
Methods Mol Biol. 2018;1813:391-414. doi: 10.1007/978-1-4939-8588-3_26.
3
NAD(+) metabolism: Bioenergetics, signaling and manipulation for therapy.
Biochim Biophys Acta. 2016 Dec;1864(12):1787-1800. doi: 10.1016/j.bbapap.2016.06.014. Epub 2016 Jun 29.
4
Biosensor reveals multiple sources for mitochondrial NAD⁺.
Science. 2016 Jun 17;352(6292):1474-7. doi: 10.1126/science.aad5168.
5
NAD⁺ in aging, metabolism, and neurodegeneration.
Science. 2015 Dec 4;350(6265):1208-13. doi: 10.1126/science.aac4854.
7
SARM1 activation triggers axon degeneration locally via NAD⁺ destruction.
Science. 2015 Apr 24;348(6233):453-7. doi: 10.1126/science.1258366. Epub 2015 Apr 23.
8
In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences.
Proc Natl Acad Sci U S A. 2015 Mar 3;112(9):2876-81. doi: 10.1073/pnas.1417921112. Epub 2015 Feb 17.
9
Metabolic profiling of alternative NAD biosynthetic routes in mouse tissues.
PLoS One. 2014 Nov 25;9(11):e113939. doi: 10.1371/journal.pone.0113939. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验