Nasseef Md Taufiq, Devenyi Gabriel A, Mechling Anna E, Harsan Laura-Adela, Chakravarty M Mallar, Kieffer Brigitte Lina, Darcq Emmanuel
Department of Psychiatry, School of Medicine, Douglas Hospital Research Center, McGill University, Montreal, QC, Canada.
Engineering Science, Computer Science and Imaging Laboratory (ICube), Integrative Multimodal Imaging in Healthcare, CNRS, University of Strasbourg, Strasbourg, France.
Front Psychiatry. 2018 Dec 3;9:643. doi: 10.3389/fpsyt.2018.00643. eCollection 2018.
Mu opioid receptor (MOR) activation facilitates reward processing and reduces pain, and brain networks underlying these effects are under intense investigation. Mice lacking the MOR gene (MOR KO mice) show lower drug and social reward, enhanced pain sensitivity and altered emotional responses. Our previous neuroimaging analysis using Resting-state (Rs) functional Magnetic Resonance Imaging (fMRI) showed significant alterations of functional connectivity (FC) within reward/aversion networks in these mice, in agreement with their behavioral deficits. Here we further used a structural MRI approach to determine whether volumetric alterations also occur in MOR KO mice. We acquired anatomical images using a 7-Tesla MRI scanner and measured deformation-based morphometry (DBM) for each voxel in subjects from MOR KO and control groups. Our analysis shows marked anatomical differences in mutant animals. We observed both local volumetric contraction (striatum, nucleus accumbens, bed nucleus of the stria terminalis, hippocampus, hypothalamus and periacqueducal gray) and expansion (prefrontal cortex, amygdala, habenula, and periacqueducal gray) at voxel level. Volumetric modifications occurred mainly in MOR-enriched regions and across reward/aversion centers, consistent with our prior FC findings. Specifically, several regions with volume differences corresponded to components showing highest FC changes in our previous Rs-fMRI study, suggesting a possible function-structure relationship in MOR KO-related brain differences. In conclusion, both Rs-fMRI and volumetric MRI in live MOR KO mice concur to disclose functional and structural whole-brain level mechanisms that likely drive MOR-controlled behaviors in animals, and may translate to MOR-associated endophenotypes or disease in humans.
μ阿片受体(MOR)的激活促进奖赏加工并减轻疼痛,对这些作用背后的脑网络的研究正在如火如荼地进行。缺乏MOR基因的小鼠(MOR基因敲除小鼠)表现出较低的药物和社交奖赏、增强的疼痛敏感性以及情绪反应改变。我们之前使用静息态(Rs)功能磁共振成像(fMRI)进行的神经影像学分析显示,这些小鼠奖赏/厌恶网络内的功能连接(FC)存在显著改变,这与它们的行为缺陷一致。在此,我们进一步采用结构MRI方法来确定MOR基因敲除小鼠是否也存在体积改变。我们使用7特斯拉MRI扫描仪获取解剖图像,并对MOR基因敲除组和对照组受试者的每个体素测量基于变形的形态学(DBM)。我们的分析显示突变动物存在明显的解剖学差异。在体素水平上,我们观察到局部体积收缩(纹状体、伏隔核、终纹床核、海马、下丘脑和导水管周围灰质)和扩张(前额叶皮层、杏仁核、缰核和导水管周围灰质)。体积改变主要发生在富含MOR的区域以及奖赏/厌恶中枢,这与我们之前的FC研究结果一致。具体而言,几个存在体积差异的区域对应于我们之前的Rs-fMRI研究中显示FC变化最大的成分,这表明在MOR基因敲除相关的脑差异中可能存在功能-结构关系。总之,活体MOR基因敲除小鼠的Rs-fMRI和体积MRI均揭示了可能驱动动物MOR控制行为的全脑水平功能和结构机制,并且可能转化为人类与MOR相关的内表型或疾病。