Instituto de Química-Física de los Materiales, Medio Ambiente y Energía, CONICET-Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina, Instituto de Cálculo, CONICET-Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
J Comput Chem. 2019 Feb 5;40(4):688-696. doi: 10.1002/jcc.25754. Epub 2018 Dec 18.
The Jarzynski equality is one of the most widely celebrated and scrutinized nonequilibrium work theorems, relating free energy to the external work performed in nonequilibrium transitions. In practice, the required ensemble average of the Boltzmann weights of infinite nonequilibrium transitions is estimated as a finite sample average, resulting in the so-called Jarzynski estimator, . Alternatively, the second-order approximation of the Jarzynski equality, though seldom invoked, is exact for Gaussian distributions and gives rise to the Fluctuation-Dissipation estimator . Here we derive the parametric maximum-likelihood estimator (MLE) of the free energy considering unidirectional work distributions belonging to Gaussian or Gamma families, and compare this estimator to . We further consider bidirectional work distributions belonging to the same families, and compare the corresponding bidirectional to the Bennett acceptance ratio ( ) estimator. We show that, for Gaussian unidirectional work distributions, is in fact the parametric MLE of the free energy, and as such, the most efficient estimator for this statistical family. We observe that and perform better than and , for unidirectional and bidirectional distributions, respectively. These results illustrate that the characterization of the underlying work distribution permits an optimal use of the Jarzynski equality. © 2018 Wiley Periodicals, Inc.
雅辛斯基等式是最广为人知和最受关注的非平衡功定理之一,它将自由能与非平衡跃迁中所做的外功联系起来。在实践中,无限非平衡跃迁所需的玻尔兹曼权重的系综平均值是作为有限样本平均值来估计的,从而产生了所谓的雅辛斯基估计量, 。或者,雅辛斯基等式的二阶近似,虽然很少被调用,但对于高斯分布是精确的,并产生了涨落耗散估计量 。在这里,我们考虑属于高斯或伽马族的单向工作分布,推导出自由能的参数最大似然估计量(MLE) ,并将其与 进行比较。我们进一步考虑属于相同家族的双向工作分布,并比较相应的双向 与贝内特接受比( )估计量。我们表明,对于高斯单向工作分布, 实际上是自由能的参数 MLE,因此,对于这个统计家族来说,它是最有效的估计量。我们观察到, 和 分别优于 和 ,对于单向和双向分布都是如此。这些结果表明,对基础工作分布的特征化允许对雅辛斯基等式进行最佳利用。