Instituto de Física, Universidad Autónoma de San Luis Potosí, Manuel Nava 6, Zona Universitaria, 78290, San Luis Potosí, SLP, Mexico.
Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av, Sierra Leona 550, 78210, San Luis Potosí, SLP, Mexico.
Sci Rep. 2018 Dec 20;8(1):17998. doi: 10.1038/s41598-018-36531-9.
Carbon Nanotubes (CNTs) are considered alternative materials for the design of advanced drug and gene delivery vectors. However, the mechanism responsible for the cellular membrane intake of CNTs is not well understood. In the present study, we show how multi-walled carbon nanotubes (MWCNTs) owning different surface properties, interact with giant unilamellar vesicles (GUVs), a simple model system for cellular membranes. In particular, we want to address the hydrophilic/hydrophobic interactions between MWCNTs and lipid membranes and the subsequent mechanical properties changes of the systems. In order to elucidate this interaction, we made the following chemical modifications on MWCNTs: oxidized MWCNTs (ox-MWCNTs) displaying reduced hydrophobic surface character, pristine MWCNTs (p-MWCNTs), and alkyl functionalized MWCNTs (alk-MWCNTs) exhibiting enhanced hydrophobic surface properties, were put in contact with GUVs and observed by confocal microscopy. Our observations revealed that the interaction between the CNTs and GUVs depends on the type of chemical functionalization: ox-MWCNTs remain at the membrane interacting with the polar head of the phospholipids, p-MWCNTs internalize GUVs spontaneously, and alk-MWCNTs persist inside the membrane. The mechanical properties of MWCNTs@GUVs systems were measured using the electrodeformation method, which shows an increased bending stiffness (κ) of the GUVs as MWCNTs concentration increases. High concentrations of p-MWCNTs and alk-MWCNTs induced vesicle adhesion; p-MWCNTs produced a considerable reduction in the average size of the GUVs, while alk-MWCNTs form complex stable structures inside the membrane. The statistical analyses of the experimental results are compared with available computer simulations. The picture emerging from our results is that the interaction between GUVs and MWCNTs is due mainly to hydrophobicity.
碳纳米管(CNTs)被认为是设计先进药物和基因输送载体的替代材料。然而,CNTs 进入细胞的机制尚不清楚。在本研究中,我们展示了具有不同表面性质的多壁碳纳米管(MWCNTs)如何与巨大的单层囊泡(GUVs)相互作用,GUVs 是一种简单的细胞膜模型系统。特别是,我们想要解决 MWCNTs 与脂质膜之间的亲水性/疏水性相互作用以及系统随后的机械性能变化。为了阐明这种相互作用,我们对 MWCNTs 进行了以下化学修饰:氧化 MWCNTs(ox-MWCNTs)显示出降低的疏水性表面特性,原始 MWCNTs(p-MWCNTs)和烷基官能化 MWCNTs(alk-MWCNTs)表现出增强的疏水性表面特性,与 GUVs 接触并用共焦显微镜观察。我们的观察结果表明,MWCNTs 与 GUVs 的相互作用取决于化学官能化的类型:ox-MWCNTs 留在与磷脂极性头相互作用的膜上,p-MWCNTs 自发地内化 GUVs,而 alk-MWCNTs 则留在膜内。使用电极变形法测量 MWCNTs@GUVs 系统的机械性能,该方法表明随着 MWCNTs 浓度的增加,GUVs 的弯曲刚度(κ)增加。高浓度的 p-MWCNTs 和 alk-MWCNTs 诱导囊泡黏附;p-MWCNTs 导致 GUVs 的平均尺寸显著减小,而 alk-MWCNTs 在膜内形成复杂稳定的结构。实验结果的统计分析与可用的计算机模拟进行了比较。我们的结果表明,GUVs 与 MWCNTs 之间的相互作用主要归因于疏水性。