Werdell P Jeremy, McKinna Lachlan I W, Boss Emmanuel, Ackleson Steven G, Craig Susanne E, Gregg Watson W, Lee Zhongping, Maritorena Stéphane, Roesler Collin S, Rousseaux Cécile S, Stramski Dariusz, Sullivan James M, Twardowski Michael S, Tzortziou Maria, Zhang Xiaodong
NASA Goddard Space Flight Center, Code 616, Greenbelt, MD, USA.
Go2Q Pty Ltd, Sunshine Coast, QLD, Australia.
Prog Oceanogr. 2018 Jan;160:186-212. doi: 10.1016/j.pocean.2018.01.001. Epub 2018 Jan 6.
Ocean color measured from satellites provides daily global, synoptic views of spectral waterleaving reflectances that can be used to generate estimates of marine inherent optical properties (IOPs). These reflectances, namely the ratio of spectral upwelled radiances to spectral downwelled irradiances, describe the light exiting a water mass that defines its color. IOPs are the spectral absorption and scattering characteristics of ocean water and its dissolved and particulate constituents. Because of their dependence on the concentration and composition of marine constituents, IOPs can be used to describe the contents of the upper ocean mixed layer. This information is critical to further our scientific understanding of biogeochemical oceanic processes, such as organic carbon production and export, phytoplankton dynamics, and responses to climatic disturbances. Given their importance, the international ocean color community has invested significant effort in improving the quality of satellite-derived IOP products, both regionally and globally. Recognizing the current influx of data products into the community and the need to improve current algorithms in anticipation of new satellite instruments (e.g., the global, hyperspectral spectroradiometer of the NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission), we present a synopsis of the current state of the art in the retrieval of these core optical properties. Contemporary approaches for obtaining IOPs from satellite ocean color are reviewed and, for clarity, separated based their inversion methodology or the type of IOPs sought. Summaries of known uncertainties associated with each approach are provided, as well as common performance metrics used to evaluate them. We discuss current knowledge gaps and make recommendations for future investment for upcoming missions whose instrument characteristics diverge sufficiently from heritage and existing sensors to warrant reassessing current approaches.
卫星测量的海洋颜色提供了全球每日的光谱离水反射率全景图,可用于估算海洋固有光学特性(IOPs)。这些反射率,即光谱上行辐亮度与光谱下行辐照度之比,描述了离开水体的光,而光决定了水体的颜色。IOPs是海水及其溶解和颗粒成分的光谱吸收和散射特性。由于它们依赖于海洋成分的浓度和组成,IOPs可用于描述海洋上层混合层的内容。这些信息对于深化我们对生物地球化学海洋过程的科学理解至关重要,比如有机碳的生产与输出、浮游植物动态以及对气候扰动的响应。鉴于其重要性,国际海洋颜色学界在区域和全球范围内都投入了大量精力来提高卫星衍生IOP产品的质量。认识到当前数据产品大量涌入该领域,以及为了应对新的卫星仪器(例如美国国家航空航天局浮游生物、气溶胶、云、海洋生态系统(PACE)任务的全球高光谱分光辐射计)而改进现有算法的必要性,我们概述了这些核心光学特性反演的当前技术水平。本文回顾了从卫星海洋颜色中获取IOPs的当代方法,并为清晰起见,根据其反演方法或所寻求的IOPs类型进行了分类。文中还提供了与每种方法相关的已知不确定性的总结,以及用于评估这些方法的常见性能指标。我们讨论了当前的知识空白,并对未来任务的投资提出建议,这些任务的仪器特性与传统和现有传感器有足够大差异以至于有必要重新评估当前方法。