Hennon Gwenn M M, Williamson Olivia M, Hernández Limón María D, Haley Sheean T, Dyhrman Sonya T
Department of Biology and Paleo Environment, Lamont-Doherty Earth Observatory, Palisades, NY, USA.
Barnard College, New York, NY, USA.
Protist. 2019 Feb;170(1):38-51. doi: 10.1016/j.protis.2018.10.002. Epub 2018 Oct 24.
Heterosigma akashiwo is a raphidophyte known for forming ichthyotoxic blooms. In order to predict the potential impacts of rising CO on H. akashiwo it is necessary to understand the factors influencing growth rates over a range of CO concentrations. Here we examined the physiology and gene expression response of H. akashiwo to concentrations from 200 to 1000ppm CO. Growth rate data were combined from this and previous studies and fit with a CO limitation-inhibition model that revealed an apparent growth optimum around 600-800ppm CO. Physiological changes included a significant increase in C:N ratio at ∼800ppm CO and a significant decrease in hydrogen peroxide concentration at ∼1000ppm. Whole transcriptome sequencing of H. akashiwo revealed sharp distinctions in metabolic pathway gene expression between ∼600 and ∼800ppm CO. Hierarchical clustering by co-expression identified groups of genes with significant correlations to CO and growth rate. Genes with significant differential expression with CO included carbon concentrating mechanism genes such as beta-carbonic anhydrases and a bicarbonate transporter, which may underpin shifts in physiology. Genes involved in cell motility were significantly changed by both elevated CO and growth rate, suggesting that future ocean conditions could modify swimming behavior in this species.
赤潮异弯藻是一种以形成鱼毒性水华而闻名的针胞藻。为了预测二氧化碳浓度上升对赤潮异弯藻的潜在影响,有必要了解在一系列二氧化碳浓度范围内影响其生长速率的因素。在此,我们研究了赤潮异弯藻对200至1000ppm二氧化碳浓度的生理和基因表达反应。将本研究及先前研究的生长速率数据合并,并与一个二氧化碳限制-抑制模型拟合,该模型显示在约600-800ppm二氧化碳浓度时出现明显的生长最佳值。生理变化包括在约800ppm二氧化碳浓度时碳氮比显著增加,以及在约1000ppm时过氧化氢浓度显著降低。赤潮异弯藻的全转录组测序揭示了在约600ppm和约800ppm二氧化碳浓度之间代谢途径基因表达的明显差异。通过共表达进行的层次聚类确定了与二氧化碳和生长速率具有显著相关性的基因簇。与二氧化碳存在显著差异表达的基因包括碳浓缩机制基因,如β-碳酸酐酶和一种碳酸氢盐转运蛋白,这可能是生理变化的基础。参与细胞运动的基因在二氧化碳浓度升高和生长速率变化时均发生了显著改变,这表明未来的海洋条件可能会改变该物种的游动行为。