Suppr超能文献

分子动力学模拟揭示pH影响下真菌β-葡萄糖苷酶的底物结合与逃逸动力学

Substrate binding versus escape dynamics in a pH-affected fungal beta-glucosidase revealed by molecular dynamics simulations.

作者信息

Solhtalab Mina, Flannelly David F, Aristilde Ludmilla

机构信息

Department of Biological and Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA.

Department of Biological and Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA.

出版信息

Carbohydr Res. 2019 Jan 15;472:127-131. doi: 10.1016/j.carres.2018.12.007. Epub 2018 Dec 11.

Abstract

The cellulolytic ability of fungal species is important to both natural and engineered biocycling of plant matter. One essential step is the conversion of cellobiose into glucose catalyzed by beta-glucosidases. Mutagenesis studies have implicated altering the substrate binding pocket to influence the pH-activity profile of this enzyme. However, structural understanding of the pH-affected substrate binding environment is lacking. Here we conducted molecular dynamics simulations of fully hydrated TrBgl2, a beta-glucosidase of Trichoderma reesei, equilibrated at its optimal pH (pH 6) and two unfavorable pHs (pH 5 and pH 7.5). We identified structural arrangement of specific residues that facilitated substrate escape from the catalytic site at pH 5 but locked the bound substrate in an unfavorable orientation at pH 7.5. For comparative analysis, we also performed simulations of a mutated TrBgl2 with previously demonstrated improved catalysis as a function of pH. We captured the responsible conformational changes in the engineered substrate binding pocket.

摘要

真菌物种的纤维素分解能力对于植物物质的自然和工程生物循环都很重要。一个关键步骤是由β-葡萄糖苷酶催化将纤维二糖转化为葡萄糖。诱变研究表明,改变底物结合口袋会影响该酶的pH-活性曲线。然而,目前缺乏对受pH影响的底物结合环境的结构理解。在此,我们对里氏木霉的β-葡萄糖苷酶TrBgl2进行了全水合分子动力学模拟,该酶在其最佳pH(pH 6)以及两个不利pH(pH 5和pH 7.5)下达到平衡。我们确定了特定残基的结构排列,这些残基在pH 5时促进底物从催化位点逸出,但在pH 7.5时将结合的底物锁定在不利的方向。为了进行比较分析,我们还对一种突变的TrBgl2进行了模拟,该突变体先前已证明其催化作用随pH的改善。我们捕捉到了工程化底物结合口袋中相关的构象变化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验