Suppr超能文献

迈向 CT 检查中自动化和个性化器官剂量测定——两种组织特征化模型在治疗计划系统中进行蒙特卡罗器官剂量计算的比较。

Toward automated and personalized organ dose determination in CT examinations - A comparison of two tissue characterization models for Monte Carlo organ dose calculation with a Therapy Planning System.

机构信息

Medical radiation sciences, Department of Immunology, Genetics and Pathology, Uppsala University, and Center for Clinical Research, Uppsala, County Dalarna, Sweden.

Bild och Funktionsmedicin, Falu lasarett, SE-791 82, Falun, Sweden.

出版信息

Med Phys. 2019 Feb;46(2):1012-1023. doi: 10.1002/mp.13357. Epub 2019 Jan 15.

Abstract

PURPOSE

Computed tomography (CT) is a versatile tool in diagnostic radiology with rapidly increasing number of examinations per year globally. Routine adaption of the exposure level for patient anatomy and examination protocol cause the patients' exposures to become diversified and harder to predict by simple methods. To facilitate individualized organ dose estimates, we explore the possibility to automate organ dose calculations using a radiotherapy treatment planning system (TPS). In particular, the mapping of CT number to elemental composition for Monte Carlo (MC) dose calculations is investigated.

METHODS

Organ dose calculations were done for a female thorax examination test case with a TPS (Raystation™, Raysearch Laboratories AB, Stockholm, Sweden) utilizing a MC dose engine with a CT source model presented in a previous study. The TPS's inherent tissue characterization model for mapping of CT number to elemental composition of the tissues was calibrated using a phantom with known elemental compositions and validated through comparison of MC calculated dose with dose measured with Thermo Luminescence Dosimeters (TLD) in an anthropomorphic phantom. Given the segmentation tools of the TPS, organ segmentation strategies suitable for automation were analyzed for high contrast organs, utilizing CT number thresholding and model-based segmentation, and for low contrast organs utilizing water replacements in larger tissue volumes. Organ doses calculated with a selection of organ segmentation methods in combination with mapping of CT numbers to elemental composition (RT model), normally used in radiotherapy, were compared to a tissue characterization model with organ segmentation and elemental compositions defined by replacement materials [International Commission on Radiological Protection (ICRP) model], frequently favored in imaging dosimetry.

RESULTS

The results of the validation with the anthropomorphic phantom yielded mean deviations from the dose to water calculated with the RT and ICRP model as measured with TLD of 1.1% and 1.5% with maximum deviations of 6.1% and 8.7% respectively over all locations in the phantom. A strategy for automated organ segmentation was evaluated for two different risk organ groups, that is, low contrast soft organs and high contrast organs. The relative deviation between organ doses calculated with the RT model and with the ICRP model varied between 0% and 20% for the thorax/upper abdomen risk organs.

CONCLUSIONS

After calibration, the RT model in the TPS provides accurate MC dose results as compared to measurements with TLD and the ICRP model. Dosimetric feasible segmentation of the risk organs for a female thorax demonstrates a possibility for automation using the segmentation tool available in a TPS for high contrast organs. Low contrast soft organs can be represented by water volumes, but organ dose to the esophagus and thyroid must be determined using standardized organ shapes. The uncertainties of the organ doses are small compared to the overall uncertainty, at least an order of magnitude larger, in the estimates of lifetime attributable risk (LAR) based on organ doses. Large-scale and automated individual organ dose calculations could provide an improvement in cancer incidence estimates from epidemiological studies.

摘要

目的

计算机断层扫描(CT)是诊断放射学中一种用途广泛的工具,其全球年检查量迅速增加。为了适应患者解剖结构和检查方案的曝光水平,常规调整导致患者的照射变得多样化,并且更难以通过简单的方法进行预测。为了便于进行个体化器官剂量估算,我们探索了使用放射治疗计划系统(TPS)实现器官剂量计算自动化的可能性。特别是,研究了将 CT 数映射到元素组成以进行蒙特卡罗(MC)剂量计算的可能性。

方法

利用先前研究中提出的具有 CT 源模型的 MC 剂量引擎,针对女性胸部检查测试案例,使用 TPS(Raystation ™,Raysearch Laboratories AB,斯德哥尔摩,瑞典)进行了器官剂量计算。利用具有已知元素组成的体模对 TPS 固有组织特征化模型进行了校准,并用热释光剂量计(TLD)在人体模型中测量的 MC 计算剂量与测量剂量进行比较,验证了该模型的有效性。基于 TPS 的分割工具,分析了适用于高对比度器官的自动化分割策略,包括 CT 数阈值分割和基于模型的分割,以及用于低对比度器官的水替代策略,即较大组织体积中的水替代策略。利用 RT 模型(通常用于放射治疗)将 CT 数映射到元素组成,并结合选择的器官分割方法,计算了一系列器官分割方法的器官剂量,并与组织特征化模型(通常用于成像剂量学)中定义的器官分割和元素组成进行了比较。

结果

利用人体模型进行验证的结果表明,与 TLD 测量的水剂量相比,RT 模型和 ICRP 模型的剂量偏差分别为 1.1%和 1.5%,最大偏差分别为 6.1%和 8.7%。评估了两种不同风险器官组(低对比度软组织和高对比度器官)的自动化器官分割策略。对于胸部/上腹部风险器官,RT 模型计算的器官剂量与 ICRP 模型计算的器官剂量之间的相对偏差在 0%至 20%之间。

结论

TPS 中的 RT 模型经校准后,与 TLD 和 ICRP 模型相比,可提供准确的 MC 剂量结果。针对女性胸部的风险器官进行了可行的剂量分割,表明可以使用 TPS 中提供的分割工具实现自动化,适用于高对比度器官。低对比度软组织可以用水体积表示,但是必须使用标准化的器官形状来确定食管和甲状腺的器官剂量。与基于器官剂量的终生归因风险(LAR)估计的总体不确定性相比,器官剂量的不确定性较小,至少大一个数量级。大规模和自动化的个体器官剂量计算可以提高流行病学研究中癌症发病率估计的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验