Suppr超能文献

基于小范围传感器网络的温度检测实时加权数据融合算法。

Real-Time Weighted Data Fusion Algorithm for Temperature Detection Based on Small-Range Sensor Network.

机构信息

College of electrical Engineering, Xinjiang University, Urumqi 830047, China.

出版信息

Sensors (Basel). 2018 Dec 25;19(1):64. doi: 10.3390/s19010064.

Abstract

Biological oxidation pretreatment, which can improve the yield of gold, is the main gold extraction technology for disposing refractory gold ore with high arsenic and sulfur. The temperature of the oxidation tank influences the oxidation efficiency between the ore pulp and bacteria, including the yield of gold. Therefore, measurement has consistently been an important subject for researchers. As an effective data processing method, data fusion has been used extensively in many fields of industrial production. However, the interference of equipment or external factors such as the diurnal temperature difference or powerful wind may constantly increase measurement errors and damage certain sensors, which may transmit error data. These problems can be solved by following a pretreatment process. First, we establish a heat transfer mechanism model. Second, we design a small-range sensor network for the pretreatment process and present a layered fusion structure of sharing sensors using a multi-connected fusion structure. Third, we introduce the idea of iterative operation in data processing. In addition, we use prior data for predicting state values twice in order to improve the effectiveness of extended Kalman filtering in one time step. This study also proposes multi-fading factors on the basis of a weighted fading memory index to adjust the prediction error covariance. Finally, the state estimation accuracy of each sensor can be used as a weighting principle for the predictive confidence of each sensor by adding a weighting factor. In this study, the performance of the proposed method is verified by simulation and compared with the traditional single-sensor method. Actual industrial measurement data are processed by the proposed method for the equipment experiment. The performance index of the simulation and the experiment shows that the proposed method has a higher global accuracy than the traditional single-sensor method. Simulation results show that the accuracy of the proposed method has a 55% improvement upon that of the traditional single-sensor method, on average. In the equipment experiment, the accuracy of the industrial measurement improved by 37% when using the proposed method.

摘要

生物氧化预处理可以提高金的产量,是处理高砷高硫难浸金矿石的主要提金技术。氧化槽的温度影响矿浆与细菌之间的氧化效率,包括金的产量。因此,测量一直是研究人员关注的重要课题。数据融合作为一种有效的数据处理方法,已广泛应用于工业生产的许多领域。然而,设备干扰或外部因素(如日温差或强风)可能会不断增加测量误差并损坏某些传感器,从而传输错误数据。这些问题可以通过预处理过程来解决。首先,我们建立了一个传热机制模型。其次,我们设计了一个预处理过程的小范围传感器网络,并提出了一种使用多连接融合结构共享传感器的分层融合结构。第三,我们在数据处理中引入了迭代操作的思想。此外,我们使用先验数据对状态值进行了两次预测,以提高扩展卡尔曼滤波在一个时间步长内的有效性。本研究还在加权遗忘指数的基础上提出了多衰减因子,以调整预测误差协方差。最后,可以将每个传感器的状态估计精度用作每个传感器预测置信度的加权原则,通过添加加权因子。在这项研究中,通过仿真验证了所提出方法的性能,并与传统的单传感器方法进行了比较。通过对设备实验的实际工业测量数据进行处理,验证了该方法的性能。仿真和实验的性能指标表明,所提出的方法比传统的单传感器方法具有更高的全局精度。仿真结果表明,所提出的方法的精度平均提高了传统单传感器方法的 55%。在设备实验中,使用所提出的方法时,工业测量的精度提高了 37%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ff8/6338929/5fdb91d977e9/sensors-19-00064-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验