Laboratorio de Ecología Evolutiva y Biología Floral, IMBIV, CONICET, Universidad Nacional de Córdoba, Casilla de Correo, Córdoba, Argentina.
PLoS One. 2018 Dec 26;13(12):e0209742. doi: 10.1371/journal.pone.0209742. eCollection 2018.
The coevolutionary process among free-living mutualists with extremely long matching traits may favor the formation of mutualistic interaction networks through coevolutionary escalation, complementarity and convergence. These networks may be geographically structured; the links among the species of a local network are shaped by the biotic composition of the community, thus creating selection mosaics at broader geographical scales. Therefore, to fully understand a coevolutionary process, it is crucial to visualize the geographical structure of the interaction network across the landscape. In this study we focused on the poorly known interaction system between Ensifera ensifera and its guild of long-flowered plant species. We combined occurrence data and environmental variables to predict E. ensifera distribution, in addition to range polygons available for plant species in order to evaluate the geographical variation in bill length and plant species richness. A positive relationship between bill length and plant species richness within the E. ensifera range suggests a geographical structuring of the interaction networks. At mid-latitude locations of E. ensifera range, where hummingbirds attained the longest bills, richness of long-flowered plant species was higher than at low latitude locations. These locations likely represent coevolutionary vortices where long-lasting reciprocal selection probably drove the evolution of long traits, consequently drawing new plant species into the coevolutionary network. Conversely, areas where the sword-billed hummingbird was absent or had shorter bills probably represent coevolutionary coldspots. Our results provide a first insight into this phenotypically specialized plant-pollinator network across the landscape and show candidate areas to test the predictions of the coevolutionary hypothesis, such as reciprocal selection.
自由生活的互利共生体之间的协同进化过程,由于具有极其匹配的特征,可能会通过协同进化的逐步升级、互补和趋同来促进互利共生相互作用网络的形成。这些网络可能具有地理结构;局部网络中物种之间的联系由群落的生物组成决定,从而在更广泛的地理尺度上创造选择镶嵌体。因此,要充分了解协同进化过程,关键是要在景观中直观地呈现相互作用网络的地理结构。在这项研究中,我们专注于知之甚少的 Ensifera ensifera 与其长花植物种属之间的相互作用系统。我们结合了出现数据和环境变量,以预测 E. ensifera 的分布,此外还结合了植物物种的范围多边形,以评估喙长度和植物物种丰富度的地理变化。E. ensifera 范围内喙长度与植物物种丰富度之间的正相关关系表明相互作用网络具有地理结构。在 E. ensifera 范围的中纬度位置,蜂鸟的喙最长,长花植物物种的丰富度高于低纬度位置。这些位置可能代表协同进化的漩涡,长期的相互选择可能推动了长特征的进化,从而将新的植物物种吸引到协同进化网络中。相反,剑嘴蜂鸟不存在或喙较短的区域可能代表协同进化的冷点。我们的研究结果首次深入了解了这种跨越景观的表型专业化植物-传粉者网络,并显示了候选区域以测试协同进化假说的预测,例如相互选择。