Suppr超能文献

衰弱和社会支持在预测心力衰竭患者 30 天内非计划性再入院或死亡风险中的附加价值:来自 OPERA-HF 的分析。

Added value of frailty and social support in predicting risk of 30-day unplanned re-admission or death for patients with heart failure: An analysis from OPERA-HF.

机构信息

Philips Research - Healthcare, Eindhoven, the Netherlands; Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands.

University of Hull, Hull, UK; National Heart & Lung Institute, Imperial College, London, UK; London and Robertson Centre for Biostatistics & Clinical Trials, University of Glasgow, UK.

出版信息

Int J Cardiol. 2019 Mar 1;278:167-172. doi: 10.1016/j.ijcard.2018.12.030. Epub 2018 Dec 13.

Abstract

BACKGROUND

Models for predicting the outcome of patients hospitalized for heart failure (HF) rarely take a holistic view. We assessed the ability of measures of frailty and social support in addition to demographic, clinical, imaging and laboratory variables to predict short-term outcome for patients discharged after a hospitalization for HF.

METHODS

OPERA-HF is a prospective observational cohort, enrolling patients hospitalized for HF in a single center in Hull, UK. Variables were combined in a logistic regression model after multiple imputation of missing data to predict the composite outcome of death or readmission at 30 days. Comparisons were made to a model using clinical variables alone. The discriminative performance of each model was internally validated with bootstrap re-sampling.

RESULTS

1094 patients were included (mean age 77 [interquartile range 68-83] years; 40% women; 56% with moderate to severe left ventricular systolic dysfunction) of whom 213 (19%) had an unplanned re-admission and 60 (5%) died within 30 days. For the composite outcome, a model containing clinical variables alone had an area under the receiver-operating characteristic curve (AUC) of 0.68 [95% CI 0.64-0.72]. Adding marital status, support from family and measures of physical frailty increased the AUC (p < 0.05) to 0.70 [95% CI 0.66-0.74].

CONCLUSIONS

Measures of physical frailty and social support improve prediction of 30-day outcome after an admission for HF but predicting near-term events remains imperfect. Further external validation and improvement of the model is required.

摘要

背景

预测心力衰竭(HF)住院患者结局的模型很少能从整体角度考虑。我们评估了衰弱和社会支持指标,以及人口统计学、临床、影像学和实验室变量,除了这些指标,这些指标在预测 HF 住院后患者短期结局方面的能力。

方法

OPERA-HF 是一项前瞻性观察队列研究,在英国赫尔的一家单中心招募 HF 住院患者。使用多重插补法对缺失数据进行填补后,将变量组合在一个逻辑回归模型中,以预测 30 天内死亡或再入院的复合结局。并将其与仅使用临床变量的模型进行了比较。使用 bootstrap 重采样对内部分辨性能进行了验证。

结果

共纳入 1094 例患者(平均年龄 77 [68-83] 岁;40%为女性;56%有中重度左心室收缩功能障碍),其中 213 例(19%)发生计划外再入院,60 例(5%)在 30 天内死亡。对于复合结局,仅包含临床变量的模型的受试者工作特征曲线下面积(AUC)为 0.68 [95% CI 0.64-0.72]。加入婚姻状况、家庭支持和身体虚弱指标后,AUC 增加(p<0.05)至 0.70 [95% CI 0.66-0.74]。

结论

身体虚弱和社会支持的指标可改善 HF 住院后 30 天结局的预测,但预测近期事件的能力仍不理想。需要进一步的外部验证和模型改进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验