Suppr超能文献

反应性平衡反应准备和执行过程中的皮质动力学与不同的姿势需求有关。

Cortical dynamics during preparation and execution of reactive balance responses with distinct postural demands.

机构信息

Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands; Department of Rehabilitation, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands.

Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands; Department of Rehabilitation, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Rehabilitation Medicine, Erasmus Medical Center, Rotterdam, the Netherlands.

出版信息

Neuroimage. 2019 Mar;188:557-571. doi: 10.1016/j.neuroimage.2018.12.045. Epub 2018 Dec 24.

Abstract

The contributions of the cerebral cortex to human balance control are clearly demonstrated by the profound impact of cortical lesions on the ability to maintain standing balance. The cerebral cortex is thought to regulate subcortical postural centers to maintain upright balance and posture under varying environmental conditions and task demands. However, the cortical mechanisms that support standing balance remain elusive. Here, we present an EEG-based analysis of cortical oscillatory dynamics during the preparation and execution of balance responses with distinct postural demands. In our experiment, participants responded to backward movements of the support surface either with one forward step or by keeping their feet in place. To challenge the postural control system, we applied participant-specific high accelerations of the support surface such that the postural demand was low for stepping responses and high for feet-in-place responses. We expected that postural demand modulated the power of intrinsic cortical oscillations. Independent component analysis and time-frequency domain statistics revealed stronger suppression of alpha (9-13 Hz) and low-gamma (31-34 Hz) rhythms in the supplementary motor area (SMA) when preparing for feet-in-place responses (i.e., high postural demand). Irrespective of the response condition, support-surface movements elicited broadband (3-17 Hz) power increase in the SMA and enhancement of the theta (3-7 Hz) rhythm in the anterior prefrontal cortex (PFC), anterior cingulate cortex (ACC), and bilateral sensorimotor cortices (M1/S1). Although the execution of reactive responses resulted in largely similar cortical dynamics, comparison between the bilateral M1/S1 showed that stepping responses corresponded with stronger suppression of the beta (13-17 Hz) rhythm in the M1/S1 contralateral to the support leg. Comparison between response conditions showed that feet-in-place responses corresponded with stronger enhancement of the theta (3-7 Hz) rhythm in the PFC. Our results provide novel insights into the cortical dynamics of SMA, PFC, and M1/S1 during the control of human balance.

摘要

大脑皮层对人类平衡控制的贡献在皮质损伤对维持站立平衡能力的深远影响中得到了明确的证明。大脑皮层被认为调节皮质下姿势中心,以在不同的环境条件和任务需求下维持直立平衡和姿势。然而,支持站立平衡的皮质机制仍然难以捉摸。在这里,我们提出了一种基于 EEG 的分析方法,用于分析在具有不同姿势需求的平衡反应的准备和执行过程中皮质振荡动力学。在我们的实验中,参与者对支撑表面的向后运动做出反应,要么向前迈出一步,要么保持双脚不动。为了挑战姿势控制系统,我们对支撑表面施加了特定于参与者的高加速度,使得对跨步反应的姿势需求较低,而对双脚原地不动的反应的姿势需求较高。我们预计,姿势需求会调节内在皮质振荡的功率。独立成分分析和时频域统计显示,在准备双脚原地不动的反应(即高姿势需求)时,补充运动区(SMA)中的α(9-13Hz)和低γ(31-34Hz)节律的抑制更强。无论反应条件如何,支撑表面运动都会引起 SMA 中的宽带(3-17Hz)功率增加,并增强前前额皮质(PFC)、前扣带皮层(ACC)和双侧感觉运动皮层(M1/S1)中的θ(3-7Hz)节律。虽然反应性反应的执行导致了大致相似的皮质动力学,但双侧 M1/S1 的比较表明,与支撑腿相对的 M1/S1 中的β(13-17Hz)节律的抑制更强,对应于跨步反应。在反应条件之间的比较表明,双脚原地不动的反应与 PFC 中θ(3-7Hz)节律的增强更强相关。我们的结果为 SMA、PFC 和 M1/S1 在人类平衡控制中的皮质动力学提供了新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验