Department of Earth, Environment and Life Science, DiSTAV, University of Genoa, Italy.
Laboratoire de Biologie marine CP160/15, Université Libre de Bruxelles, Av F.D. Roosevelt, 50, B-1050, Bruxelles, Belgium.
Mar Environ Res. 2019 Feb;144:56-61. doi: 10.1016/j.marenvres.2018.12.002. Epub 2018 Dec 17.
Sea urchins, ecologically important herbivores of shallow subtidal temperate reefs, are considered particularly threatened in a future ocean acidification scenario, since their carbonate structures (skeleton and grazing apparatus) are made up of the very soluble high-magnesium calcite, particularly sensitive to a decrease in pH. The biomechanical properties of their skeletal structures are of great importance for their individual fitness, because the skeleton provides the means for locomotion, grazing and protection from predators. Sea urchin skeleton is composed of discrete calcite plates attached to each other at sutures by organic ligaments. The present study addressed the fate of the sea urchin Paracentrotus lividus (Lamarck, 1816) skeleton in acidified oceans, taking into account the combined effect of reduced pH and macroalgal diet, with potential cascading consequences at the ecosystem level. A breaking test on individual plates of juvenile specimens fed different macroalgal diets has been performed, teasing apart plate strength and stiffness from general robustness. Results showed no direct short-term effect of a decrease in seawater pH nor of the macroalgal diet on single plate mechanical properties. Nevertheless, results from apical plates, the ones presumably formed during the experimental period, provided an indication of a possible diet-mediated response, with sea urchins fed the more calcified macroalga sustaining higher forces before breakage than the one fed the non-calcified algae. This, on the long term, may produce bottom-up effects on sea urchins, leading to potential shifts in the ecosystem equilibrium under an ocean acidified scenario.
海胆是浅海温带珊瑚礁生态系统中重要的草食性动物,被认为在未来的海洋酸化情景中受到特别威胁,因为它们的碳酸盐结构(骨骼和摄食器官)由可溶性很高的高镁方解石组成,对 pH 值下降特别敏感。其骨骼结构的生物力学特性对其个体适应性非常重要,因为骨骼为运动、摄食和防御捕食者提供了手段。海胆骨骼由离散的方解石板组成,通过有机韧带在缝合处相互连接。本研究考虑到降低 pH 值和大型藻类饮食的综合影响,探讨了酸化海洋中海胆(Paracentrotus lividus (Lamarck, 1816))骨骼的命运,这可能对生态系统层面产生级联效应。对不同大型藻类饮食喂养的幼体标本的单个板进行了断裂试验,从整体坚固性中分离出板强度和刚度。结果表明,海水 pH 值降低或大型藻类饮食对单个板机械性能没有直接的短期影响。然而,来自顶端板的结果(推测是在实验期间形成的)提供了可能的饮食介导反应的迹象,与喂食非钙化藻类的海胆相比,喂食钙化程度更高的大型藻类的海胆在断裂前能承受更高的力。从长远来看,这可能会对海胆产生自下而上的影响,导致在海洋酸化情景下生态系统平衡发生潜在变化。