Suppr超能文献

L1细胞黏附分子作为子宫内膜样子宫内膜腺癌FIGO IA - IB期的不良预后因素。

L1CAM as a Negative Prognostic Factor in Endometrioid Endometrial Adenocarcinoma FIGO Stage IA-IB.

作者信息

Klat Jaroslav, Mladenka Ales, Dvorackova Jana, Bajsova Sylva, Simetka Ondrej

机构信息

Department of Obstetrics and Gynecology, University Hospital Ostrava, Ostrava Poruba, Czech Republic

Department of Obstetrics and Gynecology, University Hospital Ostrava, Ostrava Poruba, Czech Republic.

出版信息

Anticancer Res. 2019 Jan;39(1):421-424. doi: 10.21873/anticanres.13128.

Abstract

AIMS

In this study, we aimed to investigate how positivity for L1 cell adhesion molecule (L1CAM) was associated with outcome and relapse pattern in patients with Fédération Internationale de Gynécologie et d'Obstétrique (FIGO) stage IA-IB endometrial cancer.

MATERIALS AND METHODS

This retrospective study included 358 patients who underwent surgical treatment for endometrial carcinoma. Tumor samples from 312 patients (87.2%) were available for L1CAM analysis by immunohistochemistry.

RESULTS

Of the 312 tumor samples analyzed, 93 (29.8%) were L1CAM-positive. L1CAM positivity was significantly more common in grade 3 compared to grade 1-2 carcinomas (p=0.02). Patients with L1CAM positivity more commonly experienced disease progression. Distant metastasis was significantly associated with L1CAM positivity (p=0.01). Progression-free interval and overall survival did not significantly differ between L1CAM-positive and L1CAM-negative cases.

CONCLUSION

L1CAM is a promising independent prognostic marker associated with aggressive tumor behavior and recurrence risk, but not with overall survival.

摘要

目的

在本研究中,我们旨在调查L1细胞粘附分子(L1CAM)阳性与国际妇产科联盟(FIGO)IA-IB期子宫内膜癌患者的预后及复发模式之间的关联。

材料与方法

这项回顾性研究纳入了358例行子宫内膜癌手术治疗的患者。通过免疫组织化学对312例患者(87.2%)的肿瘤样本进行L1CAM分析。

结果

在分析的312份肿瘤样本中,93份(29.8%)为L1CAM阳性。与1-2级癌相比,L1CAM阳性在3级癌中更为常见(p=0.02)。L1CAM阳性的患者更常出现疾病进展。远处转移与L1CAM阳性显著相关(p=0.01)。L1CAM阳性和L1CAM阴性病例之间的无进展生存期和总生存期无显著差异。

结论

L1CAM是一种有前景的独立预后标志物,与侵袭性肿瘤行为和复发风险相关,但与总生存期无关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验