Lauri Natalia, Bazzi Zaher, Alvarez Cora L, Leal Denis María F, Schachter Julieta, Herlax Vanesa, Ostuni Mariano A, Schwarzbaum Pablo J
Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
Faculty of Pharmacy and Biochemistry, Department of Biological Chemistry, Chair of Biological Chemistry, University of Buenos Aires, Junín 956 Buenos Aires, Argentina.
Genes (Basel). 2018 Dec 27;10(1):16. doi: 10.3390/genes10010016.
In most animals, transient increases of extracellular ATP (ATPe) are used for physiological signaling or as a danger signal in pathological conditions. ATPe dynamics are controlled by ATP release from viable cells and cell lysis, ATPe degradation and interconversion by ecto-nucleotidases, and interaction of ATPe and byproducts with cell surface purinergic receptors and purine salvage mechanisms. Infection by protozoan parasites may alter at least one of the mechanisms controlling ATPe concentration. Protozoan parasites display their own set of proteins directly altering ATPe dynamics, or control the activity of host proteins. Parasite dependent activation of ATPe conduits of the host may promote infection and systemic responses that are beneficial or detrimental to the parasite. For instance, activation of organic solute permeability at the host membrane can support the elevated metabolism of the parasite. On the other hand ecto-nucleotidases of protozoan parasites, by promoting ATPe degradation and purine/pyrimidine salvage, may be involved in parasite growth, infectivity, and virulence. In this review, we will describe the complex dynamics of ATPe regulation in the context of protozoan parasite⁻host interactions. Particular focus will be given to features of parasite membrane proteins strongly controlling ATPe dynamics. This includes evolutionary, genetic and cellular mechanisms, as well as structural-functional relationships.
在大多数动物中,细胞外ATP(ATPe)的短暂增加用于生理信号传导,或在病理条件下作为危险信号。ATPe的动态变化受活细胞ATP释放和细胞裂解、ecto - 核苷酸酶对ATPe的降解和相互转化,以及ATPe及其副产物与细胞表面嘌呤能受体和嘌呤补救机制相互作用的控制。原生动物寄生虫感染可能会改变控制ATPe浓度的至少一种机制。原生动物寄生虫展示出它们自己的一组直接改变ATPe动态变化的蛋白质,或者控制宿主蛋白质的活性。寄生虫依赖的宿主ATPe通道激活可能会促进对寄生虫有益或有害的感染和全身反应。例如,宿主膜上有机溶质通透性的激活可以支持寄生虫新陈代谢的增强。另一方面,原生动物寄生虫的ecto - 核苷酸酶通过促进ATPe降解和嘌呤/嘧啶补救,可能参与寄生虫的生长、感染性和毒力。在这篇综述中,我们将描述原生动物寄生虫与宿主相互作用背景下ATPe调节的复杂动态变化。将特别关注强烈控制ATPe动态变化的寄生虫膜蛋白的特征。这包括进化、遗传和细胞机制,以及结构 - 功能关系。