Departamento de Ingeniería Química y Química Física, Universidad de Extremadura, Avda. Elvas s/n, 06006, Badajoz, Spain; Instituto Universitario del Agua, Cambio Climático y Sostenibilidad (IACYS), Universidad de Extremadura, Avda. de la Investigación s/n, 06006, Badajoz, Spain.
Departamento de Ingeniería Química y Química Física, Universidad de Extremadura, Avda. Elvas s/n, 06006, Badajoz, Spain; Instituto Universitario del Agua, Cambio Climático y Sostenibilidad (IACYS), Universidad de Extremadura, Avda. de la Investigación s/n, 06006, Badajoz, Spain.
Water Res. 2019 Mar 15;151:226-242. doi: 10.1016/j.watres.2018.12.013. Epub 2018 Dec 21.
This study investigates the efficacy of the system O/sunlight radiation compared to dark ozonation when treating pharmaceuticals compounds of different reactivity, namely bezafibrate, cotinine, and iopamidol. Results show the beneficial effects of simulated sunlight radiation (300-800 nm) when treating ozone recalcitrant compounds such as cotinine and iopamidol. The system O/sunlight radiation increased mineralization extent in all cases if compared to dark ozonation. Transformation products identified in individual runs suggest that amine oxidation and further alkyl chain attack is the main route of bezafibrate ozonation. Hydroxylation seems to be the preferential path in cotinine abatement while H abstraction from alcoholic moieties is suggested in the case of iopamidol. Toxicity of intermediates was approximately evaluated by QSAR methodologies and experimentally through Daphnia Magna survival after 24 h. As a rule of thumb, initial intermediates generated are even more toxic than parent compounds, however, after 120 min of treatment, toxicity significantly decreased. Amongst the most toxic compounds generated: 4-Chlorobenzoyltyramine, and 4-Chloro-N-[2-(3,4-dihydroxy-phenyl)-ethyl]-benzamide (from bezafibrate), and N-(2-Hydroxy-1-hydroxymethyl-ethyl)-N'-(1-hydroxymethyl-2-oxo-ethyl)-5-(2-hydroxy-propionylamino)-2,4,6-triiodo-isophthalamide, N,N'-Bis-(1-hydroxymethyl-2-oxo-ethyl)-5-(2-hydroxy-propionylamino)-2,4,6-triiodo-isophthalamide, and N-(1-Hydroxymethyl-2-oxo-ethyl)-5-(2-hydroxy-propionylamino)-2,4,6-triiodo-isophthalamide (from iopamidol) were identified.
本研究考察了系统 O/阳光辐射与暗臭氧化处理不同反应性药物化合物(如贝扎贝特、可替宁和碘帕醇)的效果。结果表明,模拟阳光辐射(300-800nm)在处理臭氧难降解化合物如可替宁和碘帕醇时具有有益效果。与暗臭氧化相比,阳光辐射系统 O/增加了所有情况下的矿化程度。在各个运行中鉴定的转化产物表明,贝扎贝特臭氧化的主要途径是胺氧化和进一步的烷基链攻击。羟基化似乎是可替宁去除的首选途径,而在碘帕醇的情况下,建议从醇部分进行 H 提取。通过 QSAR 方法和通过 24 小时后大型溞的存活实验对中间产物的毒性进行了近似评估。一般来说,初始中间产物比母体化合物更具毒性,但在 120 分钟的处理后,毒性显著降低。在生成的最有毒化合物中:4-氯苯甲酰基酪氨酸和 4-氯-N-[2-(3,4-二羟基-苯基)-乙基]-苯甲酰胺(来自贝扎贝特)和 N-(2-羟基-1-羟甲基-乙基)-N' -(1-羟甲基-2-氧代-乙基)-5-(2-羟基丙酰基氨基)-2,4,6-三碘异酞酰亚胺,N,N'-双-(1-羟甲基-2-氧代-乙基)-5-(2-羟基丙酰基氨基)-2,4,6-三碘异酞酰亚胺和 N-(1-羟甲基-2-氧代-乙基)-5-(2-羟基丙酰基氨基)-2,4,6-三碘异酞酰亚胺(来自碘帕醇)被鉴定出来。