Institute for Atmospheric and Climate Science (IAC), ETH Zurich, Zurich, Switzerland.
J Chem Phys. 2018 Dec 28;149(24):244506. doi: 10.1063/1.5052216.
Field and laboratory measurements indicate that atmospheric organic aerosol particles can be present in a highly viscous state. In contrast to liquid state particles, the gas phase equilibration to ambient relative humidity (RH) can be kinetically limited and governed by condensed phase diffusion. In water diffusion experiments on highly viscous single aerosol particles levitated in an electrodynamic balance, we observed a characteristic shift behavior of the Mie scattering resonances indicative of the changing radial structure of the particle, thus providing an experimental method to track the diffusion process inside the particle. Due to the plasticizing effect of water, theory predicts extremely steep, front-like water concentration gradients inside highly viscous particles exposed to a rapid increase in RH. The resulting quasi step-like concentration profile motivates the use of a simple core-shell model describing the morphology of the non-equilibrium particle during humidification. The particle growth and reduction of the shell refractive index can be observed experimentally as redshift and blueshift behavior of the Mie resonances, respectively. We can deduce the particle radius as well as a core-shell radius ratio from the measured shift pattern and Mie scattering calculations. Using both the growth information obtained from the Mie resonance redshift and thermodynamic equilibrium data, we can infer a comprehensive picture of the time evolution of the diffusion fronts in the framework of our core-shell model. The observed shift behavior of the Mie resonances provides direct evidence of very steep diffusion fronts caused by the plasticizing effect of water and a method to validate previous diffusivity measurements.
现场和实验室测量表明,大气有机气溶胶颗粒可以处于高度粘性状态。与液态颗粒相比,气相与环境相对湿度(RH)的平衡可能受到动力学限制,并受凝聚相扩散控制。在电动力学天平中悬浮的高度粘性单颗粒水扩散实验中,我们观察到 Mie 散射共振的特征偏移行为,表明颗粒的径向结构发生了变化,从而提供了一种实验方法来跟踪颗粒内部的扩散过程。由于水的塑化作用,理论预测在 RH 快速增加的情况下,高度粘性颗粒内部会出现极其陡峭的、前沿状的水浓度梯度。由此产生的准阶跃浓度分布促使使用简单的核壳模型来描述加湿过程中非平衡颗粒的形态。可以观察到粒子的生长和壳层折射率的降低,这分别表现为 Mie 共振的红移和蓝移行为。我们可以从测量的位移模式和 Mie 散射计算中推导出粒子半径以及核壳半径比。通过使用从 Mie 共振红移获得的生长信息和热力学平衡数据,我们可以在核壳模型的框架内推断出扩散前沿的时间演化的综合情况。Mie 共振的观察到的位移行为为水的塑化作用引起的非常陡峭的扩散前沿提供了直接证据,也是验证先前扩散率测量的一种方法。