Suppr超能文献

一种多通道表面肌电信号模拟的新方法。

A new approach for multi-channel surface EMG signal simulation.

作者信息

Ning Yong, Zhang Yingchun

机构信息

1School of Automation and Electrical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023 Zhejiang China.

Guangdong Provincial Work Injury Rehabilitation Center, Guangzhou, 510000 China.

出版信息

Biomed Eng Lett. 2017 Jan 9;7(1):45-53. doi: 10.1007/s13534-017-0009-4. eCollection 2017 Feb.

Abstract

Simulation models are necessary for testing the performance of newly developed approaches before they can be applied to interpreting experimental data, especially when biomedical signals such as surface electromyogram (SEMG) signals are involved. A new and easily implementable surface EMG simulation model was developed in this study to simulate multi-channel SEMG signals. A single fiber action potential (SFAP) is represented by the sum of three Gaussian functions. SFAP waveforms can be modified by adjusting the amplitude and bandwidth of the Gaussian functions. SEMG signals were successfully simulated at different detected locations. Effects of the fiber depth, electrode position and conduction velocity of SFAP on motor unit action potential (MUAP) were illustrated. Results demonstrate that the easily implementable SEMG simulation approach developed in this study can be used to effectively simulate SEMG signals.

摘要

在新开发的方法应用于解释实验数据之前,尤其是涉及表面肌电图(SEMG)信号等生物医学信号时,仿真模型对于测试其性能是必要的。本研究开发了一种新的且易于实现的表面肌电图仿真模型,用于模拟多通道SEMG信号。单个纤维动作电位(SFAP)由三个高斯函数的总和表示。通过调整高斯函数的幅度和带宽,可以修改SFAP波形。在不同检测位置成功模拟了SEMG信号。阐述了纤维深度、电极位置和SFAP传导速度对运动单位动作电位(MUAP)的影响。结果表明,本研究开发的易于实现的SEMG仿真方法可用于有效模拟SEMG信号。

相似文献

1
A new approach for multi-channel surface EMG signal simulation.
Biomed Eng Lett. 2017 Jan 9;7(1):45-53. doi: 10.1007/s13534-017-0009-4. eCollection 2017 Feb.
2
Speedup computation of HD-sEMG signals using a motor unit-specific electrical source model.
Med Biol Eng Comput. 2018 Aug;56(8):1459-1473. doi: 10.1007/s11517-018-1784-5. Epub 2018 Jan 23.
3
Evaluation of higher order statistics parameters for multi channel sEMG using different force levels.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:3869-72. doi: 10.1109/IEMBS.2011.6090961.
5
A sEMG model with experimentally based simulation parameters.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:4258-61. doi: 10.1109/IEMBS.2010.5627175.
7
Simulation of surface EMG signals for a multilayer volume conductor with a superficial bone or blood vessel.
IEEE Trans Biomed Eng. 2008 Jun;55(6):1647-57. doi: 10.1109/tbme.2008.919104.
9
MUAP number estimates in surface EMG: template-matching methods and their performance boundaries.
Ann Biomed Eng. 2004 Jul;32(7):1007-15. doi: 10.1023/b:abme.0000032463.26331.b3.
10
Assessment of the non-Gaussianity and non-linearity levels of simulated sEMG signals on stationary segments.
J Electromyogr Kinesiol. 2017 Feb;32:70-82. doi: 10.1016/j.jelekin.2016.12.006. Epub 2016 Dec 25.

引用本文的文献

1
Tailoring neuromuscular dynamics: A modeling framework for realistic sEMG simulation.
PLoS One. 2025 Jun 12;20(6):e0319162. doi: 10.1371/journal.pone.0319162. eCollection 2025.
2
Analytic simulator and image generator of multiple-scattering Compton camera for prompt gamma ray imaging.
Biomed Eng Lett. 2018 Sep 10;8(4):383-392. doi: 10.1007/s13534-018-0083-2. eCollection 2018 Nov.
3
Multichannel Surface EMG Decomposition Based on Measurement Correlation and LMMSE.
J Healthc Eng. 2018 Jun 28;2018:2347589. doi: 10.1155/2018/2347589. eCollection 2018.

本文引用的文献

1
A Novel Framework Based on FastICA for High Density Surface EMG Decomposition.
IEEE Trans Neural Syst Rehabil Eng. 2016 Jan;24(1):117-27. doi: 10.1109/TNSRE.2015.2412038. Epub 2015 Mar 11.
2
Surface EMG decomposition based on K-means clustering and convolution kernel compensation.
IEEE J Biomed Health Inform. 2015 Mar;19(2):471-7. doi: 10.1109/JBHI.2014.2328497. Epub 2014 Jun 2.
3
Volume conductor models in surface electromyography: applications to signal interpretation and algorithm test.
Comput Biol Med. 2013 Aug 1;43(7):953-61. doi: 10.1016/j.compbiomed.2013.03.007. Epub 2013 Mar 26.
4
Experimental analysis of accuracy in the identification of motor unit spike trains from high-density surface EMG.
IEEE Trans Neural Syst Rehabil Eng. 2010 Jun;18(3):221-9. doi: 10.1109/TNSRE.2010.2041593. Epub 2010 Feb 8.
5
Decomposition of surface EMG signals.
J Neurophysiol. 2006 Sep;96(3):1646-57. doi: 10.1152/jn.00009.2006.
6
An analytical model for surface EMG generation in volume conductors with smooth conductivity variations.
IEEE Trans Biomed Eng. 2006 May;53(5):773-9. doi: 10.1109/TBME.2006.872825.
7
Amplitude cancellation reduces the size of motor unit potentials averaged from the surface EMG.
J Appl Physiol (1985). 2006 Jun;100(6):1928-37. doi: 10.1152/japplphysiol.01282.2005. Epub 2006 Jan 5.
8
Surface electromyogram signal modelling.
Med Biol Eng Comput. 2004 Jul;42(4):446-54. doi: 10.1007/BF02350985.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验