Sun Ruoyu
Institute of Surface-Earth System Sciences, Tianjin University, Tianjin, 300072, China.
Bull Environ Contam Toxicol. 2019 May;102(5):657-664. doi: 10.1007/s00128-018-2531-1. Epub 2019 Jan 2.
Mercury (Hg) stable isotope is a useful tool to understand the transformation of atmospheric Hg. The observation on the enrichment of heavier isotopes in gaseous elemental Hg (GEM) relative to oxidized Hg species in atmosphere cannot be convincingly explained by isotope fractionation of Hg redox processes. This review shows that the large Hg isotope mass dependent fractionation (MDF) in coal-fired boilers is one of the underlying reasons. The reported Hg isotope data of feed coals and their combustion products are first summarized to give a general overview of how Hg isotopes fractionate before Hg discharge from coal-fired boilers. Then, predictive MDF models are discussed to simulate δHg values of different Hg species in coal combustion flue gases. The discharged GEM is predicted to have the highest δHg followed by gaseous Hg and particulate-bound Hg, which is in consistent with the observed MDF pattern of atmospheric Hg species.
汞(Hg)稳定同位素是了解大气汞转化的有用工具。大气中气态单质汞(GEM)相对于氧化态汞物种的较重同位素富集现象,无法通过汞氧化还原过程的同位素分馏得到令人信服的解释。本综述表明,燃煤锅炉中汞同位素的大质量依赖分馏(MDF)是潜在原因之一。首先总结了所报道的原煤及其燃烧产物的汞同位素数据,以全面了解汞在从燃煤锅炉排放之前是如何发生同位素分馏的。然后,讨论了预测性MDF模型,以模拟煤燃烧烟气中不同汞物种的δHg值。预测排放的GEM具有最高的δHg,其次是气态汞和颗粒态汞,这与大气汞物种的观测MDF模式一致。