IEEE Trans Neural Netw Learn Syst. 2019 Aug;30(8):2528-2537. doi: 10.1109/TNNLS.2018.2885115. Epub 2019 Jan 1.
This paper investigates the problem of extended dissipativity for Markovian jump neural networks (MJNNs) with a time-varying delay. The objective is to derive less conservative extended dissipativity criteria for delayed MJNNs. Toward this aim, an appropriate Lyapunov-Krasovskii functional (LKF) with some improved delay-product-type terms is first constructed. Then, by employing the extended reciprocally convex matrix inequality (ERCMI) and the Wirtinger-based integral inequality to estimate the derivative of the constructed LKF, a delay-dependent extended dissipativity condition is derived for the delayed MJNNs. An improved extended dissipativity criterion is also given via the allowable delay sets method. Based on the above-mentioned results, the extended dissipativity condition of delayed NNs without Markovian jump parameters is directly derived. Finally, three numerical examples are employed to illustrate the advantages of the proposed method.
本文研究了时变时滞马尔可夫跳变神经网络(MJNNs)的扩展耗散性问题。目的是为延迟 MJNNs 推导出更保守的扩展耗散性准则。为此,首先构建了一个具有一些改进的时滞积型项的适当的 Lyapunov-Krasovskii 泛函(LKF)。然后,通过使用扩展互凸矩阵不等式(ERCMI)和基于 Wirtinger 的积分不等式来估计所构造的 LKF 的导数,推导出了延迟 MJNNs 的时变时滞相关扩展耗散性条件。还通过允许延迟集方法给出了改进的扩展耗散性准则。基于上述结果,直接推导出了没有马尔可夫跳变参数的延迟神经网络的扩展耗散性条件。最后,通过三个数值实例说明了所提出方法的优点。