Suppr超能文献

基于时变时滞的延迟积型泛函的马尔可夫跳跃神经网络的扩展耗散性分析。

Extended Dissipativity Analysis for Markovian Jump Neural Networks With Time-Varying Delay via Delay-Product-Type Functionals.

出版信息

IEEE Trans Neural Netw Learn Syst. 2019 Aug;30(8):2528-2537. doi: 10.1109/TNNLS.2018.2885115. Epub 2019 Jan 1.

Abstract

This paper investigates the problem of extended dissipativity for Markovian jump neural networks (MJNNs) with a time-varying delay. The objective is to derive less conservative extended dissipativity criteria for delayed MJNNs. Toward this aim, an appropriate Lyapunov-Krasovskii functional (LKF) with some improved delay-product-type terms is first constructed. Then, by employing the extended reciprocally convex matrix inequality (ERCMI) and the Wirtinger-based integral inequality to estimate the derivative of the constructed LKF, a delay-dependent extended dissipativity condition is derived for the delayed MJNNs. An improved extended dissipativity criterion is also given via the allowable delay sets method. Based on the above-mentioned results, the extended dissipativity condition of delayed NNs without Markovian jump parameters is directly derived. Finally, three numerical examples are employed to illustrate the advantages of the proposed method.

摘要

本文研究了时变时滞马尔可夫跳变神经网络(MJNNs)的扩展耗散性问题。目的是为延迟 MJNNs 推导出更保守的扩展耗散性准则。为此,首先构建了一个具有一些改进的时滞积型项的适当的 Lyapunov-Krasovskii 泛函(LKF)。然后,通过使用扩展互凸矩阵不等式(ERCMI)和基于 Wirtinger 的积分不等式来估计所构造的 LKF 的导数,推导出了延迟 MJNNs 的时变时滞相关扩展耗散性条件。还通过允许延迟集方法给出了改进的扩展耗散性准则。基于上述结果,直接推导出了没有马尔可夫跳变参数的延迟神经网络的扩展耗散性条件。最后,通过三个数值实例说明了所提出方法的优点。

相似文献

1
Extended Dissipativity Analysis for Markovian Jump Neural Networks With Time-Varying Delay via Delay-Product-Type Functionals.
IEEE Trans Neural Netw Learn Syst. 2019 Aug;30(8):2528-2537. doi: 10.1109/TNNLS.2018.2885115. Epub 2019 Jan 1.
2
Reachable set estimation for Markovian jump neural networks with time-varying delay.
Neural Netw. 2018 Dec;108:527-532. doi: 10.1016/j.neunet.2018.09.011. Epub 2018 Sep 29.
3
Extended Dissipativity Analysis for Markovian Jump Neural Networks via Double-Integral-Based Delay-Product-Type Lyapunov Functional.
IEEE Trans Neural Netw Learn Syst. 2021 Jul;32(7):3240-3246. doi: 10.1109/TNNLS.2020.3008691. Epub 2021 Jul 6.
4
Dissipativity Analysis for Neural Networks With Time-Varying Delays via a Delay-Product-Type Lyapunov Functional Approach.
IEEE Trans Neural Netw Learn Syst. 2021 Mar;32(3):975-984. doi: 10.1109/TNNLS.2020.2979778. Epub 2021 Mar 1.
5
Global exponential stability and dissipativity of generalized neural networks with time-varying delay signals.
Neural Netw. 2017 Mar;87:149-159. doi: 10.1016/j.neunet.2016.12.005. Epub 2016 Dec 23.
6
Reachable Set Estimation of Delayed Markovian Jump Neural Networks Based on an Improved Reciprocally Convex Inequality.
IEEE Trans Neural Netw Learn Syst. 2022 Jun;33(6):2737-2742. doi: 10.1109/TNNLS.2020.3045599. Epub 2022 Jun 1.
7
Stability of Markovian Jump Generalized Neural Networks With Interval Time-Varying Delays.
IEEE Trans Neural Netw Learn Syst. 2017 Aug;28(8):1840-1850. doi: 10.1109/TNNLS.2016.2552491. Epub 2016 May 9.
8
Stability and dissipativity criteria for neural networks with time-varying delays via an augmented zero equality approach.
Neural Netw. 2022 Feb;146:141-150. doi: 10.1016/j.neunet.2021.11.007. Epub 2021 Nov 13.
9
An Improved Result on Dissipativity and Passivity Analysis of Markovian Jump Stochastic Neural Networks With Two Delay Components.
IEEE Trans Neural Netw Learn Syst. 2017 Dec;28(12):3018-3031. doi: 10.1109/TNNLS.2016.2608360. Epub 2016 Oct 10.
10
Reachable Set Estimation for Markovian Jump Neutral-Type Neural Networks With Time-Varying Delays.
IEEE Trans Cybern. 2022 Feb;52(2):1150-1163. doi: 10.1109/TCYB.2020.2985837. Epub 2022 Feb 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验