Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan.
Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan.
PLoS Pathog. 2019 Jan 3;15(1):e1007427. doi: 10.1371/journal.ppat.1007427. eCollection 2019 Jan.
Mucosal immunoglobulins comprise mainly secretory IgA antibodies (SIgAs), which are the major contributor to pathogen-specific immune responses in mucosal tissues. These SIgAs are highly heterogeneous in terms of their quaternary structure. A recent report shows that the polymerization status of SIgA defines their functionality in the human upper respiratory mucosa. Higher order polymerization of SIgA (i.e., tetramers) leads to a marked increase in neutralizing activity against influenza viruses. However, the precise molecular mechanisms underlying the effects of SIgA polymerization remain elusive. Here, we developed a method for generating recombinant tetrameric monoclonal SIgAs. We then compared the anti-viral activities of these tetrameric SIgAs, which possessed variable regions identical to that of a broadly neutralizing anti-influenza antibody F045-092 against influenza A viruses, with that of monomeric IgG or IgA. The tetrameric SIgA showed anti-viral inhibitory activity superior to that of other forms only when the antibody exhibits low-affinity binding to the target. By contrast, SIgA tetramerization did not substantially modify anti-viral activity against targets with high-affinity binding. Taken together, the data suggest that tetramerization of SIgA improved target breadth, but not peak potency of antiviral functions of the broadly neutralizing anti-influenza antibody. This phenomenon presumably represents one of the mechanisms by which SIgAs present in human respiratory mucosa prevent infection by antigen-drifted influenza viruses. Understanding the mechanisms involved in cross neutralization of viruses by SIgAs might facilitate the development of vaccine strategies against viral infection of mucosal tissues.
黏膜免疫球蛋白主要包括分泌型免疫球蛋白 A(SIgA)抗体,它是黏膜组织中针对病原体特异性免疫反应的主要贡献者。这些 SIgA 在四级结构方面具有高度异质性。最近的一份报告显示,SIgA 的聚合状态决定了其在上呼吸道黏膜中的功能。SIgA 的高级别聚合(即四聚体)会导致对流感病毒的中和活性显著增加。然而,SIgA 聚合作用的精确分子机制仍不清楚。在这里,我们开发了一种产生重组四聚体单克隆 SIgA 的方法。然后,我们比较了这些四聚体 SIgA 的抗病毒活性,这些四聚体 SIgA 的可变区与广谱中和抗流感抗体 F045-092 相同,针对甲型流感病毒,与单体 IgG 或 IgA 的抗病毒活性进行了比较。只有当抗体对靶标表现出低亲和力结合时,四聚体 SIgA 才表现出优于其他形式的抗病毒抑制活性。相比之下,SIgA 四聚化并没有实质性地改变对高亲和力结合靶标的抗病毒活性。总之,数据表明,SIgA 的四聚化提高了广谱中和抗流感抗体的靶标广度,但没有提高其抗病毒功能的峰值效力。这种现象可能代表了 SIgA 存在于人类呼吸道黏膜中防止抗原漂移流感病毒感染的机制之一。了解 SIgA 对病毒的交叉中和作用的机制可能有助于开发针对黏膜组织病毒感染的疫苗策略。