Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil.
Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil.
Brain Res. 2019 May 1;1710:109-116. doi: 10.1016/j.brainres.2018.12.044. Epub 2018 Dec 31.
The baroreflex is a prominent moment-to-moment mechanism regulating the blood pressure. The hippocampus is a limbic structure in which has been pointed out as part of central network regulating baroreflex. However, the local neurochemical mechanisms involved in control of baroreflex function are not completely understood. Thus, this study aimed to investigate the involvement of nitrergic neurotransmission present in the dorsal hippocampus in baroreflex control of heart rate in conscious rats. For this, we evaluated the effect of bilateral microinjection into the dorsal hippocampus of either the nitric oxide (NO) scavenger carboxy-PTIO, the selective neuronal nitric oxide synthase (nNOS) inhibitor Nω-Propyl-l-arginine (NPLA) or the selective inducible nitric oxide synthase (iNOS) inhibitor 1400 W in bradycardia evoked by blood pressure increases in response to intravenous infusion of phenylephrine, and tachycardia caused by blood pressure decreases evoked by intravenous infusion of sodium nitroprusside. Bilateral microinjection of carboxy-PTIO into the dorsal hippocampus decreased the baroreflex tachycardic response without affecting the reflex bradycardia. Hippocampus treatment with NPLA increased the baroreflex bradycardia gain without affecting the reflex tachycardia. Bilateral hippocampal treatment with 1400 W decreased the reflex tachycardia and increased the baroreflex bradycardic response. Overall, these findings provide evidence that hippocampal nitrergic mechanisms acting in a NOS isoform-specific manner plays a prominent role in control of baroreflex function. Indeed, the results indicate that nNOS and iNOS exerts an inhibitory influence on reflex bradycardia, whereas iNOS mediates the reflex tachycardia.
压力反射是调节血压的主要即时机制。海马是边缘系统的一部分,其被指出是调节压力反射的中枢网络的一部分。然而,控制压力反射功能的局部神经化学机制尚不完全清楚。因此,本研究旨在探讨背海马中的氮能神经传递在控制心率的压力反射中的作用。为此,我们评估了背海马双侧微注射一氧化氮 (NO) 清除剂羧基-PTIO、选择性神经元型一氧化氮合酶 (nNOS) 抑制剂 Nω-丙基-L-精氨酸 (NPLA) 或选择性诱导型一氧化氮合酶 (iNOS) 抑制剂 1400W 对静脉输注去氧肾上腺素引起的血压升高时心率反射性减慢和静脉输注硝普钠引起的血压下降时心率反射性加快的影响。背海马双侧微注射羧基-PTIO 可降低压力反射性心动过速反应,而不影响反射性心动过缓。海马体用 NPLA 处理增加了压力反射性心动过缓的增益,而不影响反射性心动过速。双侧海马体用 1400W 处理可降低反射性心动过速,并增加压力反射性心动过缓反应。总的来说,这些发现提供了证据,表明以 NOS 同工型特异性方式作用的海马体氮能机制在控制压力反射功能中起着重要作用。事实上,结果表明 nNOS 和 iNOS 对反射性心动过缓产生抑制性影响,而 iNOS 介导反射性心动过速。