Suppr超能文献

在创伤后癫痫发生的临床前多中心生物标志物发现研究中,用于评估程序协调成功与否的信息学工具。

Informatics tools to assess the success of procedural harmonization in preclinical multicenter biomarker discovery study on post-traumatic epileptogenesis.

作者信息

Ciszek Robert, Ndode-Ekane Xavier Ekolle, Gomez Cesar Santana, Casillas-Espinosa Pablo M, Ali Idrish, Smith Gregory, Puhakka Noora, Lapinlampi Niina, Andrade Pedro, Kamnaksh Alaa, Immonen Riikka, Paananen Tomi, Hudson Matthew R, Brady Rhys D, Shultz Sandy R, O'Brien Terence J, Staba Richard J, Tohka Jussi, Pitkänen Asla

机构信息

A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.

A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.

出版信息

Epilepsy Res. 2019 Feb;150:17-26. doi: 10.1016/j.eplepsyres.2018.12.010. Epub 2018 Dec 27.

Abstract

The Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx) is a National Institutes for Neurological Diseases and Stoke funded Centers-Without-Walls international multidisciplinary study aimed at preventing epileptogenesis. The preclinical biomarker discovery in EpiBios4Rx applies a multicenter study design to allow the number of animals that are required for adequate statistical power for the analysis to be studied in an efficient manner. Further, the use of multiple centers mimics the clinical trial situation, and therefore potentially the chance of successful clinical translation of the outcomes of the study. Its successful implementation requires harmonization of procedures and data analyses between the three contributing centers in Finland, Australia, and USA. The objective of the present analysis was to develop metrics for analysis of the success of harmonization of procedures to guide further data analyses and plan the future multicenter preclinical studies. The interim analysis of data is based on the analysis of data from 212 rats with lateral fluid-percussion injury or sham-operation included in the biomarker discovery by April 30, 2018. The details of protocols, including production of injury, post-injury follow-up, blood sampling, electroencephalogram recording, and magnetic resonance imaging have been presented in the accompanying manuscripts in this Supplement. Implementation of protocols in EpiBios4Rx project participant centers was visualized in 2D using t-distributed stochastic neighborhood embedding (t-SNE). The protocols applied to each rat were presented as feature vectors of procedure related variables (e.g., impact pressure, anesthesia time). The total number of protocol features linked to each rat was 112. The missing data was accounted in visualization by utilizing imputation and adding the number of missing values as a third dimension to 2D t-SNE plot, resulting in a 3D overview of protocol data. Intraclass correlation coefficient (ICC) using Euclidean distances and area under receiver operating characteristic curve (AUC) of k-nearest neighbor classifier (KNN) were utilized to quantify the degree of clustering by center. Both subsets of data with incomplete protocol vectors omitted and missing protocol data imputed were assessed. Our data show that a visible clustering by center was observed in all t-SNE plots, except for day 7 neuroscores. Both ICC and AUC indicated clustering by center in all protocol variable subsets, excluding unimputed day 7 neuroscores (ICC 0.04 and AUC 0.6). ICC for imputed set of all protocol related variables was 0.1 and KNN AUC 0.92. In conclusion, both ICC and AUC indicated differences in protocol between EpiBios4Rx participating centers, which needs to be taken into account in data analysis. Importantly, the majority of observed differences are recoverable as they relate to insufficient updates in record keeping. While AUC score of KNN is a more sensitive measure for protocol harmonization than ICC for data that displays complex splintered clustering, ICC and AUC provide complementary measures to assess the degree of procedural harmonization. This experience should be helpful for other groups planning such multicenter post-traumatic epileptogenesis studies in the future.

摘要

抗癫痫发生治疗的癫痫生物信息学研究(EpiBioS4Rx)是一项由美国国立神经疾病与中风研究所资助的无墙中心国际多学科研究,旨在预防癫痫发生。EpiBios4Rx中的临床前生物标志物发现采用多中心研究设计,以便能够以高效的方式研究分析所需的具有足够统计效力的动物数量。此外,多个中心的使用模拟了临床试验情况,因此增加了研究结果成功进行临床转化的可能性。其成功实施需要芬兰、澳大利亚和美国的三个参与中心之间的程序和数据分析协调一致。本分析的目的是制定用于分析程序协调成功与否的指标,以指导进一步的数据分析并规划未来的多中心临床前研究。数据的中期分析基于对2018年4月30日前纳入生物标志物发现研究的212只遭受侧脑室液体冲击损伤或假手术的大鼠的数据进行分析。本增刊中的相关稿件已介绍了方案的详细信息,包括损伤的产生、损伤后随访、血液采样、脑电图记录和磁共振成像。EpiBios4Rx项目参与中心的方案实施情况使用t分布随机邻域嵌入(t-SNE)以二维方式进行可视化展示。应用于每只大鼠的方案以程序相关变量(如冲击压力、麻醉时间)的特征向量形式呈现。与每只大鼠相关的方案特征总数为112个。在可视化过程中,通过插补法处理缺失数据,并将缺失值的数量作为第三维添加到二维t-SNE图中,从而得到方案数据的三维概述。使用欧几里得距离的组内相关系数(ICC)和k近邻分类器(KNN)的受试者操作特征曲线下面积(AUC)来量化各中心的聚类程度。对省略了不完整方案向量的数据子集和插补了缺失方案数据的数据子集均进行了评估。我们的数据表明,在所有t-SNE图中均观察到按中心聚类的情况,但第7天的神经评分除外。ICC和AUC均表明在所有方案变量子集中存在按中心聚类的情况,但未插补的第7天神经评分除外(ICC为0.04,AUC为0.6)。所有方案相关变量插补集的ICC为0.1,KNN的AUC为0.92。总之,ICC和AUC均表明EpiBios4Rx参与中心之间的方案存在差异,在数据分析中需要考虑这一点。重要的是,观察到的大多数差异是可以弥补的,因为它们与记录保存更新不足有关。虽然对于显示复杂分散聚类的数据,KNN的AUC评分在方案协调方面比ICC更敏感,但ICC和AUC提供了互补的措施来评估程序协调的程度。这一经验对未来计划开展此类多中心创伤后癫痫发生研究的其他团队应有所帮助。

相似文献

4
Harmonization of pipeline for preclinical multicenter MRI biomarker discovery in a rat model of post-traumatic epileptogenesis.
Epilepsy Res. 2019 Feb;150:46-57. doi: 10.1016/j.eplepsyres.2019.01.001. Epub 2019 Jan 7.

本文引用的文献

4
Harmonization of pipeline for preclinical multicenter MRI biomarker discovery in a rat model of post-traumatic epileptogenesis.
Epilepsy Res. 2019 Feb;150:46-57. doi: 10.1016/j.eplepsyres.2019.01.001. Epub 2019 Jan 7.
7
Epilepsy biomarkers - Toward etiology and pathology specificity.
Neurobiol Dis. 2019 Mar;123:42-58. doi: 10.1016/j.nbd.2018.05.007. Epub 2018 May 18.
8
Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research.
Lancet Neurol. 2017 Dec;16(12):987-1048. doi: 10.1016/S1474-4422(17)30371-X. Epub 2017 Nov 6.
10
Disease-modifying effect of atipamezole in a model of post-traumatic epilepsy.
Epilepsy Res. 2017 Oct;136:18-34. doi: 10.1016/j.eplepsyres.2017.07.005. Epub 2017 Jul 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验