College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan, 250014, P. R. China.
Phys Chem Chem Phys. 2019 Jan 21;21(3):1478-1483. doi: 10.1039/c8cp06926c. Epub 2019 Jan 4.
An ideal interface model combining a hematite nanoplate-based photoanode with Au nanoparticles (NPs) is proposed for elucidating the specific role of Au NPs in photoelectrochemical performances. The theoretical and experimental results reveal that Au/FeO nanoplates can lead to an enhanced localized electric field at the metal-semiconductor interface upon the formation of surface plasmon resonance and hot electrons, which can be injected into the conduction band of the semiconductor, thus improving the efficiency of the generation and separation of electron-hole pairs. As expected, the Au/FeO nanoplate-based photoelectrode possessed a higher carrier density and a photocurrent of 1.7 mA cm and 3.8 mA cm at 1.23 V and 1.5 V vs. RHE, which are nearly 5 times and 30 times larger than that of the Au/FeO nanocrystals and pristine FeO nanoplate-based photoelectrodes, respectively.
提出了一种将基于赤铁矿纳米板的光阳极与 Au 纳米粒子 (NPs) 结合的理想界面模型,以阐明 Au NPs 在光电化学性能中的具体作用。理论和实验结果表明,Au/FeO 纳米板在形成表面等离激元共振和热电子时,会在金属-半导体界面产生增强的局域电场,这些电子可以注入半导体的导带,从而提高电子-空穴对的生成和分离效率。正如预期的那样,基于 Au/FeO 纳米板的光电电极具有更高的载流子密度和光电流,在 1.23 V 和 1.5 V 相对于 RHE 时分别为 1.7 mA cm 和 3.8 mA cm,分别是 Au/FeO 纳米晶和原始 FeO 纳米板光电电极的 5 倍和 30 倍。