Suppr超能文献

大规模多输入多输出系统中存在的信道和硬件损伤的研究综述。

A Survey on Massive MIMO Systems in Presence of Channel and Hardware Impairments.

机构信息

School of Electrical and Computer Engineering, University of Tehran, Tehran 1439957131, Iran.

Instituto de Telecomunicações, 1049-001 Lisbon, Portugal.

出版信息

Sensors (Basel). 2019 Jan 4;19(1):164. doi: 10.3390/s19010164.

Abstract

Massive multiple input multiple output (MIMO) technology is one of the promising technologies for fifth generation (5G) cellular communications. In this technology, each cell has a base station (BS) with a large number of antennas, allowing the simultaneous use of the same resources (e.g., frequency and/or time slots) by multiple users of a cell. Therefore, massive MIMO systems can bring very high spectral and power efficiencies. However, this technology faces some important issues that need to be addressed. One of these issues is the performance degradation due to hardware impairments, since low-cost RF chains need to be employed. Another issue is the channel estimation and channel aging effects, especially in fast mobility environments. In this paper we will perform a comprehensive study on these two issues considering two of the most promising candidate waveforms for massive MIMO systems: Orthogonal frequency division multiplexing (OFDM) and single-carrier frequency domain processing (SC-FDP). The studies and the results show that hardware impairments and inaccurate channel knowledge can degrade the performance of massive MIMO systems extensively. However, using suitable low complex estimation and compensation techniques and also selecting a suitable waveform can reduce these effects.

摘要

大规模多输入多输出(MIMO)技术是第五代(5G)蜂窝通信的有前途的技术之一。在这项技术中,每个小区都有一个基站(BS),拥有大量天线,允许小区内的多个用户同时使用相同的资源(例如,频率和/或时隙)。因此,大规模 MIMO 系统可以带来非常高的频谱和功率效率。然而,这项技术面临着一些需要解决的重要问题。其中一个问题是由于使用低成本射频链而导致的硬件损伤引起的性能下降。另一个问题是信道估计和信道老化效应,特别是在高速移动环境中。在本文中,我们将考虑大规模 MIMO 系统中最有前途的两种候选波形:正交频分复用(OFDM)和单载波频域处理(SC-FDP),对这两个问题进行全面研究。研究和结果表明,硬件损伤和不准确的信道知识会大大降低大规模 MIMO 系统的性能。然而,使用合适的低复杂度估计和补偿技术以及选择合适的波形可以降低这些影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e15f/6339125/cb315bf5ef2b/sensors-19-00164-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验