Suppr超能文献

通过脑对脑接口共享认知负荷来提高人类表现。

Increasing Human Performance by Sharing Cognitive Load Using Brain-to-Brain Interface.

作者信息

Maksimenko Vladimir A, Hramov Alexander E, Frolov Nikita S, Lüttjohann Annika, Nedaivozov Vladimir O, Grubov Vadim V, Runnova Anastasia E, Makarov Vladimir V, Kurths Jürgen, Pisarchik Alexander N

机构信息

REC "Artificial Intelligence Systems and Neurotechnology", Yuri Gagarin State Technical University of Saratov, Saratov, Russia.

Institute of Physiology I, University of Münster, Münster, Germany.

出版信息

Front Neurosci. 2018 Dec 13;12:949. doi: 10.3389/fnins.2018.00949. eCollection 2018.

Abstract

Brain-computer interfaces (BCIs) attract a lot of attention because of their ability to improve the brain's efficiency in performing complex tasks using a computer. Furthermore, BCIs can increase human's performance not only due to human-machine interactions, but also thanks to an optimal distribution of cognitive load among all members of a group working on a common task, i.e., due to human-human interaction. The latter is of particular importance when sustained attention and alertness are required. In every day practice, this is a common occurrence, for example, among office workers, pilots of a military or a civil aircraft, power plant operators, etc. Their routinely work includes continuous monitoring of instrument readings and implies a heavy cognitive load due to processing large amounts of visual information. In this paper, we propose a brain-to-brain interface (BBI) which estimates brain states of every participant and distributes a cognitive load among all members of the group accomplishing together a common task. The BBI allows sharing the whole workload between all participants depending on their current cognitive performance estimated from their electrical brain activity. We show that the team efficiency can be increased due to redistribution of the work between participants so that the most difficult workload falls on the operator who exhibits maximum performance. Finally, we demonstrate that the human-to-human interaction is more efficient in the presence of a certain delay determined by brain rhythms. The obtained results are promising for the development of a new generation of communication systems based on neurophysiological brain activity of interacting people. Such BBIs will distribute a common task between all group members according to their individual physical conditions.

摘要

脑机接口(BCIs)因其能够提高大脑使用计算机执行复杂任务的效率而备受关注。此外,脑机接口不仅可以通过人机交互提高人类的表现,还得益于在共同执行一项任务的所有团队成员之间优化认知负荷分配,即通过人际交互。当需要持续注意力和警觉性时,后者尤为重要。在日常实践中,这种情况很常见,例如在办公室工作人员、军用或民用飞机飞行员、发电厂操作员等人群中。他们的日常工作包括持续监测仪器读数,并且由于处理大量视觉信息而意味着沉重的认知负荷。在本文中,我们提出了一种脑对脑接口(BBI),它可以估计每个参与者的脑状态,并在共同完成一项任务的团队所有成员之间分配认知负荷。脑对脑接口允许根据从他们的脑电活动估计出的当前认知表现,在所有参与者之间分担整个工作量。我们表明,通过参与者之间重新分配工作,团队效率可以提高,从而使最困难的工作量落在表现最佳的操作员身上。最后,我们证明在由脑节律确定的特定延迟存在的情况下,人际交互效率更高。所获得的结果对于基于相互作用人群的神经生理脑活动开发新一代通信系统很有前景。这种脑对脑接口将根据所有团队成员的个体身体状况在他们之间分配一项共同任务。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9a2/6315120/383ca00e95cd/fnins-12-00949-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验