Suppr超能文献

具有多重监督的离散哈希

Discrete Hashing with Multiple Supervision.

作者信息

Luo Xin, Zhang Peng-Fei, Huang Zi, Nie Liqiang, Xu Xin-Shun

出版信息

IEEE Trans Image Process. 2019 Jan 11. doi: 10.1109/TIP.2019.2892703.

Abstract

Supervised hashing methods have achieved more promising results than unsupervised ones by leveraging label information to generate compact and accurate hash codes. Most of the prior supervised hashing methods construct an n × n instance-pairwise similarity matrix, where n is the number of training samples. Nevertheless, this kind of similarity matrix results in high memory space cost and makes the optimization time-consuming, which make it unacceptable in many real applications. In addition, most of the methods relax the discrete constraints to solve the optimization problem, which may cause large quantization errors and finally leads to poor performance. To address these limitations, in this paper, we present a novel hashing method, named Discrete Hashing with Multiple Supervision (MSDH). MSDH supervises the hash code learning with both class-wise and instance-class similarity matrices, whose space cost is much less than the instance-pairwise similarity matrix. With multiple supervision information, better hash codes can be learnt. Besides, an iterative optimization algorithm is proposed to directly learn the discrete hash codes instead of relaxing the binary constraints. Experimental results on several widely-used benchmark datasets demonstrate that MSDH outperforms some state-of-the-art methods.

摘要

通过利用标签信息来生成紧凑且准确的哈希码,有监督哈希方法比无监督哈希方法取得了更有前景的结果。大多数先前的有监督哈希方法构建一个n×n的实例对相似性矩阵,其中n是训练样本的数量。然而,这种相似性矩阵会导致高内存空间成本,并使优化过程耗时,这在许多实际应用中是不可接受的。此外,大多数方法通过放宽离散约束来解决优化问题,这可能会导致较大的量化误差并最终导致性能不佳。为了解决这些限制,在本文中,我们提出了一种新颖的哈希方法,名为多监督离散哈希(MSDH)。MSDH通过类内和实例-类相似性矩阵来监督哈希码学习,其空间成本远低于实例对相似性矩阵。借助多监督信息,可以学习到更好的哈希码。此外,还提出了一种迭代优化算法来直接学习离散哈希码,而不是放宽二进制约束。在几个广泛使用的基准数据集上的实验结果表明,MSDH优于一些现有的先进方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验