Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK.
Nanoscale. 2019 Jan 23;11(4):1901-1913. doi: 10.1039/c8nr08821g.
Here we study the high-temperature formation and dynamics of large inversion domains (IDs) that form in monolayer MoS2 using atomic-resolution annular dark-field scanning transmission electron microscopy (ADF-STEM) with an in situ heating stage. We use temperatures above 700 °C to thermally activate rapid S vacancy migration and this leads to a formation mechanism of IDs that differs from the one at room temperature, where S vacancy migration is limited. We show that at high temperatures the formation of IDs occurs from intersected networks of long S vacancy line defects, whose strain fields are non-orthogonal and trigger large scale atomic reconstructions. Once formed, the IDs are influenced by the dynamic behaviour of nearby line defects and voids. With Mo and S atoms undergoing movement, the two types of ID grain boundaries can shift to allow further expansion of the ID area along the adjoining line defects. We reveal that IDs serve as metastable configurations between line defect rearrangements and eventual void formation under electron beam irradiation during heating. The formation of voids near to the IDs causes them to revert back to pristine lattice, which has the effect of restricting the ID domain size to a certain range (e.g. 3-5 nm in our observation) instead of continuously enlarging. This study provides insights into how the MoS2 IDs form and evolve at high temperature and can benefit the tailoring of electronic properties of two dimensional materials by structural manipulation.
在这里,我们使用带有原位加热台的原子分辨率环形暗场扫描透射电子显微镜(ADF-STEM)研究了在单层 MoS2 中形成的大反演畴(IDs)的高温形成和动力学。我们使用高于 700°C 的温度来热激活快速 S 空位迁移,这导致了与在室温下不同的 IDs 形成机制,在室温下 S 空位迁移受到限制。我们表明,在高温下,IDs 的形成是从长 S 空位线缺陷的相交网络开始的,其应变场是非正交的,并引发大规模原子重构。一旦形成,IDs 就会受到附近线缺陷和空位的动态行为的影响。随着 Mo 和 S 原子的移动,两种类型的 ID 晶界可以移动,以允许 ID 区域沿着相邻的线缺陷进一步扩展。我们揭示了 IDs 在加热过程中电子束辐照下作为线缺陷重排和最终形成空位之间的亚稳构型。在 IDs 附近形成的空位导致它们恢复到原始晶格,这会将 ID 畴尺寸限制在一定范围内(例如在我们的观察中为 3-5nm),而不是连续增大。这项研究深入了解了 MoS2 IDs 在高温下的形成和演化方式,并可以通过结构操纵来改善二维材料的电子性质。